共查询到18条相似文献,搜索用时 109 毫秒
1.
2.
3.
4.
研究了色氨酸(tryptophan即Trp)在多壁碳纳米管修饰玻碳电极(MWNTs/GC)上的电化学行为。MWNTs/GC电极对Trp具有良好的电催化作用,相对于GC电极,Trp在MWNTs/GC上峰电位负移128 mV,峰电流约为GC电极上氧化峰电流的31倍。在1.0 mol/L H2SO4中清洗能更新电极表面,消除产物吸附带来的影响。MWNTs/GC电极在含1.0×10-4mol/L Trp的缓冲溶液中闭路富集2 min时电流达到稳定值。研究了不同pH值影响的结果表明,参与电极反应的质子数和电子数相等。在pH=2.2时,Trp的氧化电流最大。利用LSV研究了电流与扫描速率的关系,结果表明,Trp在修饰电极上的氧化过程为扩散控制过程。在环境温度低于45℃时,随着温度增加,氧化电流逐渐增大。温度在16~35℃范围内,传感器的响应电流与温度成线性关系,温度系数为0.695μA/℃,说明此传感器在实测过程中因温度波动带来的测量误差很小。利用LSV研究了氧化峰电流与Trp的浓度关系的结果显示,峰电流与Trp的浓度在1.00×10-6~1.00×10-4mol/L范围内呈良好线性关系,检出限为1.82×10-7mol/L(S/N=3)。该电极具有良好的灵敏度、选择性和稳定性,放置7 d后,碳纳米管的峰电流仍能达到最初电流的98%。 相似文献
5.
基于银纳米粒子/氧化石墨烯复合薄膜制备TNP电化学传感器 总被引:1,自引:0,他引:1
利用改进的Hummers法制备了氧化石墨烯(GO),以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2,4,6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明,AgNPs/GO对TNP有较强的电催化活性,在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆,电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8mol.cm-2,在所研究电位下的速率常数为9.745×10-5cm.s-1。在pH 6.8的磷酸缓冲液中,当富集电位为-0.70 V,富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7mol.L-1范围内成良好线性关系,相关系数为0.995 8,检出限可达1.0×10-9mol.L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测,加标回收率在97.6%~103.9%之间。 相似文献
6.
7.
利用改进的Hummers法制备了氧化石墨烯(GO), 以葡萄糖为还原剂直接在GO表面沉积银纳米粒子(AgNPs)得到性能稳定的AgNPs/GO纳米复合材料;基于该纳米复合材料修饰电极构建了一种新型的2, 4, 6-三硝基苯酚(TNP)电化学传感器。采用原子力显微镜(AFM)、扫描电镜(SEM)、透射电镜(TEM)、紫外可见光谱(UV-Vis)和交流阻抗(EIS)等多种方法对纳米复合薄膜进行了表征;并研究了TNP在复合薄膜修饰电极上的电化学行为和动力学性质。结果表明, AgNPs/GO对TNP有较强的电催化活性, 在复合薄膜修饰电极出现一灵敏的氧化峰和3个还原峰;利用氧化峰可对TNP进行定量分析。同时整个电极过程明显不可逆, 电极反应受到吸附步骤控制;复合膜电极表面覆盖度为5.617×10-8 mol·cm-2, 在所研究电位下的速率常数为9.745×10-5 cm·s-1。在pH 6.8的磷酸缓冲液中, 当富集电位为-0.70 V, 富集时间为60 s;TNP氧化峰电流与其浓度在5.0×10-9~1.0×10-7 mol·L-1范围内成良好线性关系, 相关系数为0.995 8, 检出限可达1.0×10-9 mol·L-1。所制备的电化学传感器稳定性和选择性较好;用于实际水样中TNP的现场快速检测, 加标回收率在 97.6%~103.9%之间。 相似文献
8.
9.
将玻碳电极(GCE)放入含有L-色氨酸(TR)和氧化石墨烯(GO)底液进行循环扫描聚合,得到聚L-色氨酸(PTR)和电化学还原石墨烯(ERGO),从而制备了PTR-ERGO/GCE,电极具有较快的电子传递速率和较好的催化能力。利用循环伏安法(CV)和差分脉冲伏安法(DPV)探究尿酸(UA)和黄嘌呤(Xa)在该电极上的电化学行为。UA和Xa在电极表面的氧化过程均受吸附和扩散共同控制,以扩散为主。在最佳条件下,UA在0.626 V处产生一个氧化峰,Xa在0.994 V处产生一个氧化峰,两峰分开0.368 V,不需分离,即可同时进行测定。采用DPV法同时测定UA和Xa的线性范围分别为5.0×10-8~2.0×10-4mol/L和1.0×10-7~2.0×10-4mol/L,检出限分别为10和30 nmol/L。方法已用于人体尿样中尿酸和黄嘌呤的同时测定。 相似文献
10.
本研究先采用滴涂法制备了多壁碳纳米管修饰电极,然后采用电化学沉积技术从含有氧化石墨烯的溶液中制备了石墨烯(GR)/多壁碳纳米管(MWCNT)复合膜修饰电极(GR/MWCNT/GCE)。研究了亚硝酸根(NO2-)在该修饰电极上的电化学行为。结果表明,该修饰电极对亚硝酸根的电氧化具有高的催化活性。在pH 7.00的PBS缓冲溶液中,微分脉冲伏安法测定亚硝酸根的线性范围为1.0×10-7mol·L-1~1.7×10-3mol·L-1,检出限为5.0×10-8mol·L-1(S/N=3)。用该法测定了土壤中亚硝酸根的含量,结果令人满意。 相似文献
11.
The graphene nanosheets/manganese oxide nanoparticles modified glassy carbon electrode (GC/GNSs/MnOx) was simply prepared by casting a thin film of GNSs on the GC electrode surface, followed by performing electrodeposition of MnOx at applied constant potential. The GC/GNSs/MnOx modified electrode shows high catalytic activity toward oxidation of L ‐cysteine. Hydrodynamic amperometry determination of L ‐cysteine gave linear responses over a concentration range up to 120 µM with a detection limit of 75 nM and sensitivity of 27 nA µM?1. The GC/GNSs/MnOx electrode appears to be a highly efficient platform for the development of sensitive, stable and reproducible L ‐cysteine electrochemical sensors. 相似文献
12.
Amany M. Fekry Soha A. Abdel-Gawad Shereen M. Azab Alain Walcarius 《Electroanalysis》2021,33(4):964-974
A carbon paste electrode (CPE) modified with Nafion, Graphene oxide and zeolite has been prepared and characterized, and the resulting Nafion/Graphene oxide/Zeolite modified carbon paste electrode (N/G/Z/MCPE) has been applied to the electrochemical detection of Moxifloxacin hydrochloride (MOXI). It exhibited a good electrocatalytic activity in phosphate buffer (optimum at pH 7.4), as pointed out by cyclic voltammetry (CV), and N/G/Z/MCPE can be exploited for MOXI detection by chronoamperometry, electrochemical impedance spectroscopy and differential pulse voltammetry. This latter was the most sensitive one and gave rise to a linear calibration curve in the 0.04 to 250 μM concentration range, with limits of detection and qualification estimated at 1.0 nM and 3.3 nM, respectively. Contrary to previous electrochemical sensors for MOXI (e. g., CPE modified with metal nanoparticles), this new sensor can be used for multiple successive analyses without needing to refresh its surface. 相似文献
13.
根据鸟嘌呤在短单壁碳纳米管修饰玻碳电极(S-SWCNT/GCE)上发生的电催化氧化特性,及其氧化电位对支持电解质溶液的pH值具有灵敏的响应,制备了以鸟嘌呤为指示剂的固体电位型pH传感器。在优化各种影响因素后,其电位在pH2.0~12.0范围内具有线性响应,回归方程为Epa(V)=-0.0497pH 0.8931。该传感器制备简单,使用方便,响应时间<20 s。在pH响应范围内待测液中离子强度对测定没有影响。酸碱滴定终点具有明显的突跃。对Na 、K 和Ca2 的选择性系数小。已成功地应用于实际样品的测定。 相似文献
14.
Selvaraj Paramasivam Chikkili Venkateswara Raju Sandu Hemalatha Jayaraman Mathiyarasu Shanmugam Senthil Kumar 《Electroanalysis》2020,32(6):1273-1279
Alloxan is a toxic reagent that strongly induces the diabetes by destroying insulin‐producing β‐cells in the pancreas of living organisms. The reduction product of alloxan is dialuric acid, which is responsible for the intracellular generation of ROS to enhance the stress in living cells to cause kidney disease or diabetic nephropathy. Herein, we studied for the first time the electrochemical properties of alloxan on reduced graphene oxide modified glassy carbon electrode (rGO/GCE) in 0.1 M phosphate buffer solution (PBS) at pH 7. The obtained results were compared with graphene oxide modified GCE (GO/GCE) and bare GCE surfaces. The modified rGO/GCE showed well defined redox couple with 10 fold increase in both reduction as well as oxidation peak current for alloxan than that of GO/GCE and bare GCE. Differential pulse voltammetry (DPV) technique shows the linear increase in both oxidation and reduction peak current of alloxan in the range of 30 μM to 3 mM with LOD of 1.2 μM. An amperometric signal of alloxan is also increases with respect to each addition of 50 μM of alloxan on rGO/GCE at constant potential of ?0.05 V. The linear range of alloxan is observed between 50 μM to 750 μM (S/N=3). This kind of rGO/GCE surface is more suitable platform or sensor matrix for estimating unknown concentration of alloxan molecule in the real biological systems. 相似文献
15.
以碳纳米管和氧化石墨烯(CNTs/GO)为主体材料, 通过化学还原法制备了CNTs/GO 负载硫的复合正极材料CNTs/GO/S. 扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试表明, CNTs 均匀插层在GO片间, 从而形成三维多孔结构, 有利于电解液的浸润; 活性物质硫均匀地负载在CNTs/GO 表面. 电化学测试表明,CNTs/GO/S复合材料具有高的比容量和良好的循环稳定性: 在1C倍率电流密度下, 复合材料首次放电比容量高达904 mAh·g-1, 经过50圈循环之后, 复合材料的比容量仍保持在578 mAh·g-1. 相似文献
16.
17.
以表面处理多壁碳纳米管(MWCNTs)和硝酸银为原料,利用硼氢化钠还原法制备了纳米银/多壁碳纳米管复合材料(AgNPs/MWCNTs),并通过紫外-可见吸收光谱、红外光谱、拉曼光谱和X射线衍射进行表征。采用滴涂法将该纳米复合材料修饰至玻碳电极表面,得到纳米银/多壁碳纳米管修饰电极(AgNPs/MWCNTs/GCE)。以AgNPs/MWCNTs/GCE为工作电极,研究了缓冲溶液、pH值、支持电解质和扫描速度对磺胺甲■唑(SMZ)电化学反应活性的影响。结果表明,与多壁碳纳米管、纳米银单独修饰电极相比,该纳米复合材料修饰电极对SMZ显示了更高的电催化活性。优化条件下,SMZ浓度在3.0×10~(-7)~5.0×10~(-5) mol/L范围内与峰电流呈线性关系,检出限(S/N=3)为6.4×10~(-8) mol/L。该方法操作简单、快速,可用于河水样品中SMZ的检测。 相似文献
18.
以灭除威(XMC)为模板分子,甲基丙烯酸(MAA)为功能单体,合成的马来松香丙烯酸乙二醇酯(EGMRA)为交联剂,在石墨烯掺杂金纳米粒子修饰玻碳电极表面合成分子印迹膜,研制了测定XMC的分子印迹电化学传感器。采用扫描电镜(SEM)对传感膜的形貌进行表征,通过循环伏安法(CV)、电化学阻抗谱法(EIS)和差示脉冲伏安法(DPV)对传感器的性能进行研究。DPV测试表明,XMC的浓度在1.0×10-7~2.0×10-5mol·L-1范围内呈良好线性关系,相关系数(r)为0.997 9,检出限(S/N=3)为1.5×10-8mol·L-1。选择性识别实验结果表明,XMC印迹敏感膜的印迹因子(β)达到2.94,相对于干扰物的选择因子(α)均大于1,对与XMC结构相似的速灭威的选择因子达到2.39,说明该印迹膜对XMC具有良好的选择性。识别过程动力学研究结果表明,石墨烯掺杂金纳米粒子分子印迹传感器的动力学结合速率常数k为73.05 s。将此传感器应用于蔬菜样品的加标回收检测,加标回收率为95.4%~108.0%。 相似文献