共查询到20条相似文献,搜索用时 62 毫秒
2.
3.
4.
罗丹明类染料在分析化学中的应用进展 总被引:8,自引:0,他引:8
综述了90年代以来,罗丹明类染料在吸光光度分析,荧光分析,动力学分析等方面的应用,利用罗丹明染料进行测定的物质达50多种,且灵敏度很高。 相似文献
5.
罗丹明以其良好的光稳定性、光物理性质和荧光效应得到了人们的极大重视。 基于罗丹明的螺环衍生物与被检测物质作用开环而产生荧光响应的特性,将两个或多个罗丹明母体单元构筑到包含特异性的识别单元的探针分子中,形成多枝的罗丹明酰肼类荧光探针,不仅可以弥补单分子探针的某些功能缺陷,而且可以使其具有更高灵敏度、更高选择性和可靠性,更加有利于分析检测。 本文着重从设计原理、识别性能、应用范围等方面介绍了多枝罗丹明探针在Hg2+、Cu2+、Fe3+和Al3+等离子检测中发展趋势,并展望了这类荧光探针在活细胞金属离子光学成像的应用前景。 相似文献
6.
纳米探针在肿瘤的高灵敏成像和高效治疗可视化方面具有重要的应用前景.通过细胞原位成像技术揭示纳米探针与细胞间的相互作用将为其临床应用奠定生物学基础.同步辐射X射线成像技术是研究纳米探针细胞原位摄取、胞内代谢及构效关系的重要方法.本文系统总结了基于同步辐射光源X射线成像技术在纳米探针细胞原位成像方面的研究进展,包括纳米探针的细胞原位成像、亚细胞结构原位成像、细胞原位价态分析、细胞原位定量成像以及细胞原位三维成像.此外,本文还对可用于纳米探针细胞成像的X射线成像技术的发展趋势进行了探讨. 相似文献
7.
三价金属离子(Cr~(3+)、Fe~(3+)和Al~(3+))与人体健康密切相关。目前,检测Cr~(3+)、Fe~(3+)和Al~(3+)需要采用不同的荧光探针,增加了检测成本和检测时间。发展能够同时检测Cr~(3+)、Fe~(3+)和Al~(3+)的高灵敏度和强抗干扰能力的荧光探针具有非常重要的意义。本文以罗丹明B为原料,合成和表征了一种罗丹明类荧光增强型探针(P),并研究了其光谱性质。研究表明,在V(甲醇)∶V(水)=9∶1体系中对三价金属离子Fe~(3+)、Cr~(3+)和Al~(3+)具有较高的选择性,不受其它二价金属离子及一价金属离子的影响,抗干扰能力强。同时,探针P对三价金属离子具有较高的灵敏度,对Cr~(3+)、Al~(3+)和Fe~(3+)的检测限分别为3.0×10~(-4)、2.7×10~(-4)和1.0×10~(-4)mol/L,表明其可用于Cr~(3+)、Al~(3+)和Fe~(3+)的检测。 相似文献
8.
一种罗丹明类次氯酸荧光探针的合成与分析应用 总被引:1,自引:0,他引:1
通过一步反应合成了一种次氯酸(HOCl)荧光探针罗丹明6G酰肼,利用核磁和质谱对探针结构进行表征,并研究了其检测HOCl的荧光性能。实验结果表明,探针对HOCl的荧光分析具有高的灵敏性和选择性。利用不可逆的氧化还原反应,探针在中性溶液中快速产生与HOCl浓度呈线性比例的荧光增强信号,检测的线性范围为2~400μmol/L,检出限为0.06μmol/L,其他常见活性氧物种对检测影响小。探针能检测自来水中HOCl的含量,并在HeLa活细胞中实现了HOCl的荧光成像。 相似文献
9.
10.
11.
A review is given on optical means for single shot testing (probing) as well as continuous monitoring (sensing) of heavy metal ions (HMs). Following an introduction into indicator based approaches, we discuss the types of indicator dyes and polymeric supports used, as well as existing sensing schemes for HMs. The wealth of information is compiled in the form of tables and critically reviewed. Notwithstanding the tremendous work performed so far, it is obvious that still severe limitations do exist in terms of selectivity, limits of detection, dynamic ranges, applicability to specific problems, and reversibility. On the other hand, such sensors have found — and will find — their application whenever rapid and cost-effective testing is required, where personnel is scarce or unskilled, and in field tests. Despite their limitations, the number of such sensors (and of irreversible probes) for HMs is likely to increase in future. 相似文献
12.
Two-dimensional (2D) nanomaterials are promising building blocks for sensors due to their unique physical, chemical, electronic, and optical properties. This review (with 253 references) first summarizes the historical developments of 2D nanomaterials and discusses the advantages of 2D nanomaterials when applied for constructing sensors. Next, their properties are discussed, with subsections on electronic, optical, mechanical and chemical properties. This is followed by an overview on methods for syntheses and the effects of positive and/or negative charges on the properties and in sensing applications. Then, recent advances in 2D nanomaterial-based electrochemical, fluorometric, colorimetric, electrochemiluminescent, photoelectrochemical, and field-effect transistor sensors are discussed. The discussion also includes the preparation of sensing elements, the roles of such nanomaterials, and assay strategies. Finally, on the basis of the current achievements in the field of 2D nanomaterials, the perspectives on the challenges and opportunities for the exploration of 2D nanomaterial-based sensors are put forward. 相似文献
13.
Exploratory investigations were conducted to probe several aspects of a new strategy for the design of metal ion fluorescence sensors. The results of the investigation show that lariat-crown ethers that contain amine and thioether side chains, and a naphthalene chromophore can be efficiently prepared by using sequences that rely on key single electron transfer promoted photocyclization reactions. Members of this novel family of lariat-crown ethers serve as selective fluorescence sensors for the divalent metal cation of Mg, Hg, and Pb. The response of the sensors to the divalent metal ion is modulated by the nature of the heteroatom(s) incorporated into the side chains. Specifically, lariat-crown ethers that contain tertiary amine groups in their side chains display an off-on type response to Mg(II), Hg(II), and Pb(II). In contrast, thioether side chain containing lariat-crown ethers behave differently in that their fluorescence intensities decrease in the presence of increasing concentrations of these divalent metal cations. These responses can be understood on the basis of selective divalent metal ion induced disruption of intramolecular single electron transfer (SET)-quenching (for side chain amine containing lariat-crown ethers) and the enhancement of intersystem crossing (for side chain thioether containing lariat-crown ethers) of the singlet excited state of the naphthalene fluorophore. 相似文献
14.
Exposure to mercury causes severe damage to various tissues and organs in humans. Concern over mercury toxicity has encouraged the development of efficient, sensitive, and selective methods for the in vivo detection of mercury. Although a variety of chemosensors have been exploited for this purpose, no in vivo monitoring systems have been described to date. In this report, we describe an irreversible rhodamine chemosensor-based, real-time monitoring system to detect mercury ions in living cells and, in particular, vertebrate organisms. The chemosensor responds rapidly, irreversibly, and stoichiometrically to mercury ions in aqueous media at room temperature. The results of experiments with mammalian cells and zebrafish show that the mercury chemosensor is cell and organism permeable and that it responds selectively to mercury ions over other metal ions. In addition, real-time monitoring of mercury-ion uptake by cells and zebrafish using this chemosensor shows that saturation of mercury-ion uptake occurs within 20-30 min in cells and organisms. Finally, accumulation of mercury ions in zebrafish tissue and organs is readily detected by using this rhodamine-based chemosensor. 相似文献
15.
Yicun Huang Fanyong Yan Manman Fu Ruiqi Zhang Xuguang Zhou Jinxia Xu 《Journal of the Iranian Chemical Society》2017,14(1):157-176
Because some metal ions are highly toxic even at trace level, a constant demand of developing methods for monitoring and removing these metal ions is extremely urgent. Silica-based optical chemosensors are supposed as good alternatives to classical instrumental methods for detecting and adsorbing metal ions, due to their effect and lower price. Silica nanoparticles, silica gel and mesoporous silica are used as supporting platforms to fabricate optical chemosensors. They have certain properties containing high porosity and expectant adsorption capacity. Chromogenic-type and fluorogenic-type optical probes, such as azobenzene, naphthalimide and rhodamine, are grafted to the surface of silica-based materials by sol–gel reaction, the limit of detection, response time and selective properties of optical sensors are improved sequentially. In this paper, the articles of silica-based optical chemosensors are retrospected since 2008, describing silica-based optical sensors used for sensing metal ions. The sensing mechanism, optical phenomenon, detection limit, adsorption capacity and application are also reviewed. 相似文献
16.
《中国科学:化学(英文版)》2017,(3)
The heavy metal ions,especially Cd~(2+),Pb~(2+) and Hg~(2+),show extremely hazard to the environment and human being.The measurement of heavy metal ions using sensors is catching more and more attention for its advantages of high sensitivity and selectivity,low-cost,convenience to handle and rapid detection.In recent years,nanomaterials such as gold nanoparticles(NPs),magnetic nanoparticles,graphene and nanocomposite materials are applied in sensors for improving sensitivity and selectivity,making the research on electrochemical(EC) sensors,spectrometric biosensors and colorimetric biosensors become a hot spot in the application to investigate heavy metal ions,in particular,Cd~(2+),Pb~(2+) and Hg~(2+).In this short review,the research of advanced detection of Cd~(2+),Pb~(2+) and Hg~(2+) and its progress based on nanomaterial sensors in recent years is reviewed. 相似文献
17.
A common problem in detecting metal ions with fluorescentchemosensors is the emission-suppressing effects of fluorescence-quenching metal ions. This quenching tendency makes it difficult to design sensors with turn-on signal, and differentiate between several metal ions that may yield a strong quenching response. To address these challenges, we investigate a new sensor design strategy, incorporating fluorophores and metal ligands as DNA base replacements in DNA-like oligomers, for generating a broader range of responses for quenching metal ions. The modular molecular design enabled rapid synthesis and discovery of sensors from libraries on PEG-polystyrene beads. Using this approach, water-soluble sensors 1-5 were identified as strong responders to a set of eight typically quenching metal ions (Co(2+), Ni(2+), Cu(2+), Hg(2+), Pb(2+), Ag(+), Cr(3+), and Fe(3+)). They were synthesized and characterized for sensing responses in solution. Cross-screening with the full set of metal ions showed that they have a wide variety of responses, including emission enhancements and red- and blue-shifts. The diversity of sensor responses allows as few as two sensors (1 and 2) to be used together to successfully differentiate these eight metals. As a test, a set of unknown metal ion solutions in blind studies were also successfully identified based on the response pattern of the sensors. The modular nature of the sensor design strategy suggests a broadly applicable approach to finding sensors for differentiating many different cations by pattern-based recognition, simply by varying the sequence and composition of ligands and fluorophores on a DNA synthesizer. 相似文献
18.
A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions 总被引:2,自引:0,他引:2
This tutorial review focuses on the recent development of rhodamine derivatives, in which the spirolactam (non-fluorescent) to ring-opened amide (fluorescent) process was utilized. 相似文献
19.
This study introduces new concepts in the design, synthesis, and in vitro and in vivo characterization, manipulation, and imaging of organic chelates whose association with metal ions is rapidly and reversibly controlled by using light. Di- and tricarboxylic group bearing photochromes, nitrobenzospiropyran (nitroBIPS), undergo rapid and reversible, optically driven transitions between their spiro (SP) and fluorescent merocyanine (MC) states. The MC state of nitroBIPS-8-DA binds tightly to various metal ions resulting in specific shifts in absorption and fluorescence, and the dissociation constant for its Gadolinium complex in water is measured at approximately 5 microM. The metal-bound MC state is converted to the weaker-binding SP state with use of 543 nm light, while the SP to MC transition is complete with use of 365 or 720 nm (2-photon) light within several microseconds. Fluorescence imaging of the MC state of nitroBIPS-8-TriA was used to quantify the rate and efficiency of optical switching and to provide a real-time readout of the state of the optically switchable chelate within living cells. 相似文献