首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
质子交换膜燃料电池电极的一种新的制备方法   总被引:19,自引:0,他引:19  
提出一种新的电极制备方法 ,在薄层催化层电极制备中加入造孔剂 ,并使用喷涂方法 ,使质子交换膜燃料电池 (PEMFC)电极中铂担量降到 0 .0 2mgPt/cm2 .与文献方法相比 ,新方法过程简单、成本低、易放大 .并通过实验得到电极的最佳组成为 :催化剂 :造孔剂 :Nafion =3:3:1 .采用此方法制备的电极 (0 .0 2mgPt/cm2 )与Nafion 1 1 5膜组装成电池 ,单池工作电压为 0 .7V时 ,每毫克铂可产生 2 0A的电流 ,每千瓦电池组仅需 72mgPt .  相似文献   

2.
We have developed a sensitive and stable electrochemical method for 17β-estradiol (E2) detection using fast-scan cyclic voltammetry (FSCV). Recently, E2 was proposed to function as a rapid synaptocrine signaling molecule in the brain; however, methods to directly monitor subsecond fluctuations in E2 are currently unavailable, limiting our understanding of the dynamics and mechanism of rapid E2 release. FSCV at carbon-fiber microelectrodes enables subsecond detection of electroactive neurochemicals directly in tissues like the brain. Here, we have electrochemically characterized E2 using FSCV for use in a tissue matrix. The limit of detection of E2 is 31.2±2.5 nM with FSCV, which will enable low nanomolar fluctuations in extracellular E2 to be monitored with hundred millisecond temporal resolution. We also identify specific parameters for waveform modification to improve future detection. This method will significantly improve E2 sensing capabilities and will have far-reaching impacts on improving our understanding of dynamic E2 signaling in the brain.  相似文献   

3.
Electroosmotic pumps are arguably the simplest of all pumps, consisting merely of two flow-through electrodes separated by a porous membrane. Most use platinum electrodes and operate at high voltages, electrolyzing water. Because evolved gas bubbles adhere and block parts of the electrodes and the membrane, steady pumping rates are difficult to sustain. Here we show that when the platinum electrodes are replaced by consumed Ag/Ag(2)O electrodes, the pumps operate well below 1.23 V, the thermodynamic threshold for electrolysis of water at 25 °C, where neither H(2) nor O(2) is produced. The pumping of water is efficient: 13?000 water molecules are pumped per reacted electron and 4.8 mL of water are pumped per joule at a flow rate of 0.13 mL min(-1) V(-1) cm(-2), and a flow rate per unit of power is 290 mL min(-1) W(-1). The water is driven by protons produced in the anode reaction 2Ag(s) + H(2)O → Ag(2)O(s) + 2H(+) + 2e(-), traveling through the porous membrane, consumed by hydroxide ions generated in the cathode reaction Ag(2)O(s) + 2 H(2)O + 2e(-) → 2Ag(s) + 2 OH(-). A pump of 2 mm thickness and 0.3 cm(2) cross-sectional area produces flow of 5-30 μL min(-1) when operating at 0.2-0.8 V and 0.04-0.2 mA. Its flow rate can be either voltage or current controlled. The flow rate suffices for the delivery of drugs, such as a meal-associated boli of insulin.  相似文献   

4.
用SNIFTIRS和循环伏安法研究酸性溶液中次亚磷酸钠在多晶铂电极上的电氧化机理.分析了0.5mol/LH2SO4+0.1mol/LNaH2PO2溶液中原位红外反射谱图与电极电位的关系,发现在发生反应的电位下Pt电极上的吸附物种有氢原子和H2PO2,最终的氧化产物是H3PO4而不是H2PO3-,据此提出了酸性介质中次亚磷酸根离子在Pt上氧化的新机理.  相似文献   

5.
Brilliant blue FCF‐modified glassy carbon electrodes have been prepared by cycling the Nafion (or poly(diallyldimethylammonium chloride) (PDDAC)) coated electrodes repeatedly 15 cycles in brilliant blue FCF (BB FCF) dye solution. The BB FCF molecules are incorporated into Nafion coating by cycling the film‐covered electrode between +0.3 to 1.2 V (vs. Ag/AgCl) in pH 1.5 BB FCF solution while PDDAC‐coated electrode cycled between 0 to ?1.0 V (vs. Ag/AgCl) in pH 6.5 BB FCF solution to immobilize the dye. Electrostatic interaction between dye molecule and PDDAC was predominant in PDDAC coating whereas immobilization of dye in Nafion film attributed to the combined effect of electrostatic and hydrophobic interactions. The voltammetric features of BB FCF‐modified electrodes resemble that of surface‐confined redox couples. The peak potentials of BB FCF‐incorporated PDDAC‐coated electrode were shifted to more positive potential region with decreasing pH of contacting solution. BB FCF‐modified electrodes showed electrocatalytic activity towards reduction of oxygen and oxidation of L ‐cysteine with significant decease of overvoltage compared to unmodified electrode. The BB FCF‐modified Nafion‐coated electrode was tested for its analytical applications toward determination of L ‐cysteine. The linear range of calibration plot at BB FCF‐modified Nafion‐coated electrode is 10 to 100 μM, which coincides with L ‐cysteine levels in biological fluids. Sensitivity and detection limit of the electrode are 111 nA μM?1 and 0.5 μM, respectively.  相似文献   

6.
Carbon nanotubes (CNTs) are promising materials for use in amperometric biosensors. The defect sites at their ends, and on their sidewalls, are considered to be edge plane-like defects and show high electrocatalytic activity toward several biological molecules. However, electrocatalytic activity toward H(2)O(2) has not been compared among bamboo-structured CNTs (BCNTs), which have many defect sites; hollow-structured CNTs (HCNTs), which have few defect sites; edge plane pyrolytic graphite (EPG); and traditional glassy carbon (GC). The advantages of using CNTs in electrodes for biosensors are still equivocal. To confirm the utility of CNTs, we analyzed the electrochemical performance of these four carbon electrodes. The slope of the calibration curve for H(2)O(2) at potentials of both +0.6 V and -0.1 V obtained with a BCNT paste electrode (BCNTPE) was more than 10 times greater than the slopes obtained with an HCNT paste electrode and a GC electrode, reflecting the BCNT's larger number of defect sites. Although the slope with the EPG electrode (EPGE) was about 40 times greater than that with BCNTPE at +0.6 V, the slopes with these two carbon electrodes were nearly equivalent at -0.1 V. EPGE demonstrated excessive electrochemical activity, detecting currents on the basis of consumption of oxygen and oxidation of ascorbic acid, even at -0.1 V. In contrast, BCNTPE could dominantly detect a cathodic current for H(2)O(2) at -0.1 V, even when interfering molecules were added. BCNTPE possesses appropriate electrochemical activity and is an effective electrode materials for developing interference-free oxidase-based biosensors operated by the application of an appropriate potential.  相似文献   

7.
Oxygen reduction reaction (ORR) measurements and (195)Pt electrochemical nuclear magnetic resonance (EC-NMR) spectroscopy were combined to study a series of carbon-supported platinum nanoparticle electrocatalysts (Pt/CB) with average diameters in the range of roughly 1-5 nm. ORR rate constants and H(2)O(2) yields evaluated from hydrodynamic voltammograms did not show any particle size dependency. The apparent activation energy of 37 kJ mol(-1), obtained for the ORR rate constant, was identical to that obtained for bulk platinum electrodes. Pt/CB catalysts on Nafion produced only 0.7-1% of H(2)O(2), confirming that the direct four-electron reduction of O(2) to H(2)O is the predominant reaction. NMR spectral features showed characteristic size dependence, and the line shapes were reproduced by using the layer-deconvolution model. Namely, the variations in the NMR spectra with particle size can be explained as due to the combined effect of the layer-by-layer variation of the s-type and d-type local density of states. However, the surface peak position of (195)Pt NMR spectra and the spin-lattice relaxation time of surface platinum atoms showed practically no change with the particle size variation. We conclude that there is a negligible difference in the surface electronic properties of these Pt/CB catalysts due to size variations and therefore, the ORR activities are not affected by the differences in the particle size.  相似文献   

8.
Ross AE  Venton BJ 《The Analyst》2012,137(13):3045-3051
Adenosine is a neuromodulator that regulates neurotransmission. Adenosine can be monitored using fast-scan cyclic voltammetry at carbon-fiber microelectrodes and ATP is a possible interferent in vivo because the electroactive moiety, adenine, is the same for both molecules. In this study, we investigated carbon-fiber microelectrodes coated with Nafion and carbon nanotubes (CNTs) to enhance the sensitivity of adenosine and decrease interference by ATP. Electrodes coated in 0.05 mg mL(-1) CNTs in Nafion had a 4.2 ± 0.2 fold increase in current for adenosine, twice as large as for Nafion alone. Nafion-CNT electrodes were 6 times more sensitive to adenosine than ATP. The Nafion-CNT coating did not slow the temporal response of the electrode. Comparing different purine bases shows that the presence of an amine group enhances sensitivity and that purines with carbonyl groups, such as guanine and hypoxanthine, do not have as great an enhancement after Nafion-CNT coating. The ribose group provides additional sensitivity enhancement for adenosine over adenine. The Nafion-CNT modified electrodes exhibited significantly more current for adenosine than ATP in brain slices. Therefore, Nafion-CNT modified electrodes are useful for sensitive, selective detection of adenosine in biological samples.  相似文献   

9.
Dai X  Compton RG 《The Analyst》2006,131(4):516-521
The electrochemical detection of As(III) was investigated on a platinum nanoparticle modified glassy carbon electrode in 1 M aqueous HClO4. Platinum nanoparticle modified glassy carbon electrodes were prepared by potential cycling in 0.1 M aqueous KCl containing 1 mM K2PtCl6. In each potential cycle, the potential was held at + 0.5 V for 0.01 s and at -0.7 V for 10 s. 25 cycles were optimally used to prepare the electrodes. The resulting electrode surfaces were characterized with AFM. The response to arsenic(III) on the modified electrode was examined using cyclic voltammetry and linear sweep voltammetry. By using the As(III) oxidation peak for the analytical determination, there is no interference from Cu(II) if present in contrast to the other metal surfaces (especially gold) typically used for the detection of arsenic; Cu(II) precludes the use of the As(0) to As(III) peak for quantitative anodic stripping voltammetry measurements due to the formation of Cu3As2 and an overlapping interference peak from the stripping of Cu(0). After optimization, a LOD of 2.1 +/- 0.05 ppb was obtained using the direct oxidation of As(III) to As(V), while the World Health Organization's guideline value of arsenic for drinking water is 10 ppb, suggesting the method may have practical utility.  相似文献   

10.
Oxygen reduction reaction (ORR) activity and H(2)O(2) formation at Nafion-coated film electrodes of bulk-Pt and Pt nanoparticles dispersed on carbon black (Pt/CB) were investigated in 0.1 M HClO(4) solution at 30 to 110 degrees C by using a channel flow double electrode method. We have found that the apparent rate constants k(app) (per real Pt active surface area) for the ORR at bulk-Pt (with and without Nafion-coating) and Nafion-coated Pt/CB (19.3 and 46.7 wt % Pt, d(Pt) = 2.6 to 2.7 nm) thin-film electrodes were in beautiful agreement with each other in the operation conditions of polymer electrolyte fuel cells (PEFCs), i.e., 30-110 degrees C and ca. 0.7 to 0.8 V vs RHE. The H(2)O(2) yield was 0.6-1.0% at 0.7-0.8 V on all Nafion-coated Pt/CB and bulk-Pt and irrespective of Pt-loading level and temperature. Nafion coating was pointed out to be a major factor for the H(2)O(2) formation on Pt catalysts modifying the surface property, because H(2)O(2) production was not detected at the bulk-Pt electrode without Nafion coating.  相似文献   

11.
Luscombe DL  Bond AM 《Talanta》1991,38(1):65-72
The reverse-phase separation and electrochemical detection of alpha-, gg-, and delta-tocopherol at a potential of +0.90 V vs. a gold pseudo-reference electrode is possible down to 10(-7)M concentrations, with surface-modified platinum microdisc electrodes in a methanol/water (95:5) solvent mixture. The use of microclectrodes with radii of 10-70 mum, rather than electrodes of conventional size, minimizes problems associated with iR drop and obviates the need for deliberately added electrolyte. These features simplify the analytical procedure. The background response of an untreated platinum microelectrode in the methanol/water (95:5) system at positive potentials is characterized by processes arising from adsorption/oxidation of methanol and formation of surface oxides. Amperometric detection is of little use under these conditions. However, preoxidation of the electrode surface in 2M nitric acid inhibits the methanol adsorption/oxidation reaction but not the tocopherol response and therefore allows highly sensitive amperometric detection.  相似文献   

12.
林祥钦  孙玉刚  崔华 《分析化学》1999,27(5):497-503
提出一种使用循环伏安(CV)扫描电位下的电致化学发光(ECL)研究方法,在自制的仪器系统中同时进行i-E和I-E测量,获得对应的CV和电位分辨的电致化学发光(PRECL)曲线。首先发现碱性鲁米诺体系在玻碳电极(GCE)上呈现2个阳极发光峰(在0.32V、0.39Vvs.Ag)和1个阴极发光峰(在-0.62V),在Pt电极上呈现2个阳极发光峰(在0.49V、0.75V)。结合CV、一阶微分伏安、Cl  相似文献   

13.
Electrodes were prepared by spin-coating spectroscopic graphite rods with a Nafion doped sol. Coating solutions consisting of Nafion:TEOS (tetraethoxysilane) ratios of 3:1 and 4:1 gave smooth films on the electrode surface. These modified electrodes were evaluated and compared with Nafion modified and bare spectroscopic graphite electrodes using methyl viologen (MV2+) as a representative cationic electroactive probe. Substantial partitioning of MV2+ into the Nafion:sol–gel matrix to the electrode surface was observed by cyclic voltammetry and square wave voltammetry. Cyclic voltammograms of MV2+ in 0.1 M NaCl at Nafion:sol–gel 4:1 modified electrodes showed a reversible reduction to MV+ with E0′=−0.695 V vs. Ag/AgCl. Results of scan rate variation showed the wave to be characterized by semi-infinite diffusion for scan rates in the range 50–500 mV/s. Slowing the scan rate below 50 mV/s resulted in a transition to thin-layer behavior. MV2+ partitioned much more quickly into the sol–gel-Nafion modified electrodes compared to pure Nafion modified electrodes. Reversibility of the MV2+-loaded modified Nafion-doped sol–gel coatings on electrodes was obtained by soaking in 1 M NaCl solution. Concentration calibration plots for MV2+ at the sol–gel-Nafion modified electrodes were nonlinear. Substantial enhancement of current signal at low concentrations was observed by square wave voltammetry.  相似文献   

14.
The electrochemical oxidation of p-nitrophenol (p-NP) has been studied comparatively on a graphene modified electrode and a multiwall carbon nanotube (MWNT) electrode by using cyclic and differential pulse voltammetry. The sensors were fabricated by modifying screen-printed electrodes with graphene and MWNT nanomaterials, respectively, both dispersed in Nafion polymer. p-NP is irreversibly oxidized at +0.9?V (vs. the Ag/AgCl) in solutions of pH 7. The height and potential of the peaks depend on pH in the range from 5 to 11. In acidic media, p-NP yields a well-defined oxidation peak at +0.96?V which gradually increases in height with the concentration of the analyte. In case of differential pulse voltammetry in sulfuric acid solution, the sensitivity is practically the same for both electrodes. The modified electrodes display an unusually wide linear response (from 10???M to 0.62?mM of p-NP), with a detection limit of 0.6???M in case of the graphene electrode, and of 1.3???M in case of the MWNT electrode.
Figure
DPV responses of graphene and MWNT electrodes to increasing concentrations of p-NP in H2SO4 20?mM solution. Inset: liniar plot of oxidation peak currents with the concentration of p-NP.  相似文献   

15.
《Electroanalysis》2006,18(18):1786-1792
Electrochemical detection of quercetin has been carried out on glassy carbon electrodes modified with carbon nanotubes and Nafion (GC/Nafion‐CNT). GC/Nafion‐CNT electrodes did not show passivation effect that occurs on the unmodified electrodes and displayed better stability and reproducibility. Quercetin oxidation was most favorable in acidic conditions and current gradually decreased as the solution pH increased. No oxidation was observed when two ? OH groups in a catechol moiety were fully deprotonated. These electrodes enabled selective determination of quercetin in the presence of interfering species such as ascorbic acid, uric acid, glucose, and catechol in large excess. Quantification of quercetin in a yellow onion has been made and favorably compared with reported values. Good selectivity and high sensitivity obtained by Osteryoung sSquare‐wave voltammetry can open new possibilities of direct quercetin determination in vegetables with a minimal sample treatment.  相似文献   

16.
Acetonitrile yields two oxidative peaks, first at ca. +0.30 and second at ca. +1.15 V vs. Ag/AgCl in cyclic voltammetry with platinum electrodes in 0.10 M methanesulfonic acid (MSA) containing 0.05–5 mM concentrations of acetonitrile. This electroactivity of the nitrile group was used for a direct detection of nitriles after their chromatographic separation. Three organic nitriles (acetonitrile, propionitrile and butanenitrile) were separated with an IonPac ICE-AS 1 column, eluted with 0.10 M MSA and detected on a platinum electrode via pulsed amperometric detection. Analytical performance was evaluated with a three potential waveform (+0.30 V, +1.15 V, −0.30 V vs. Ag/AgCl, current integration at +1.15 V). Numerical values of detection limits, linearity of calibration and reproducibility are reported for all three organic nitriles.  相似文献   

17.
The electrochemical oxidation reaction of nitrogen dioxide (NO2) using boron doped diamond (BDD) electrodes is presented. Cyclic voltammetry of NO2 in a 0.1 M KClO4 solution exhibits oxidation peaks at +1.1 V and +1.5 V (vs. Ag/AgCl) which are attributable to oxidation of HONO and NO2, respectively. Moreover, the pH and scan rate dependences were investigated to study the oxidation mechanism. A linear calibration curve was observed in the concentration range of ∼1 to 5 mM (R2=0.99) with a detection limit of 11.1 ppb (S/B=3) for HONO and 58.6 ppb (S/B=3) for NO2. In addition, the analytical performance was compared with those using glassy carbon, platinum and stainless steel as the working electrode.  相似文献   

18.
We present cyclodextrin-modified capillary electrophoresis equipped with a microfabricated chip consisting of an array of eight interdigitated microband platinum electrodes (IDs) for simultaneous analysis of three chiral models: epinephrine, norepinephrine and isoproterenol. The IDE chip, positioned very close to the capillary outlet, served as an amplification/detection system. Emerging neurotransmitters at the IDE surface were oxidized at +1.1 V by seven electrodes of the array and then detected by the remaining electrode, poised at +0.0 V. There was an amplification effect on the detecting electrode owing to the recycle between the reduced and oxidized forms of the optical isomers at the electrode surface. The detecting "amplification" current response was governed by the applied potential, the detecting electrode position, the number of adjacent electrodes used for recycling and the distance between the oxidative and reductive electrodes. The six chiral forms of the three neurotransmitters were resolved using 25 mM heptakis(2,6,di-o-methyl)-beta-cyclodextrin with a detection limit of approximately 5 microM. The scheme detected a reduced compound at a reducing potential instead of conventional oxidation detection to alleviate electrode fouling and electroactive interferences. The concurrent oxidation/reduction detection of compounds also facilitated and ascertained peak identification as interfering compounds were unlikely to have the same oxidative/reductive characteristics and mobilities as the analytes of interrogation.  相似文献   

19.
The vanadate anion in the presence of pyrazine-2-carboxylic acid (PCA [identical with] pcaH) efficiently catalyzes the oxidation of 2-propanol by hydrogen peroxide to give acetone. UV-vis spectroscopic monitoring of the reaction as well as the kinetics lead to the conclusion that the crucial step of the process is the monomolecular decomposition of a diperoxovanadium(V) complex containing the pca ligand to afford the peroxyl radical, HOO(.-) and a V(IV) derivative. The rate-limiting step in the overall process may not be this (rapid) decomposition itself but (prior to this step) the slow hydrogen transfer from a coordinated H2O2 molecule to the oxygen atom of a pca ligand at the vanadium center: "(pca)(O=)V...O2H2" --> "(pca)(HO-)V-OOH". The V(IV) derivative reacts with a new hydrogen peroxide molecule to generate the hydroxyl radical ("V(IV)" + H2O2 --> "V(V)" + HO(-) + HO(.-)), active in the activation of isopropanol: HO(.-) + Me2CH(OH) --> H2O + Me2C(.-)(OH). The reaction with an alkane, RH, in acetonitrile proceeds analogously, and in this case the hydroxyl radical abstracts a hydrogen atom from the alkane: HO(.-) + RH --> H2O + R(.-). These conclusions are in a good agreement with the results obtained by Bell and co-workers (Khaliullin, R. Z.; Bell, A. T.; Head-Gordon, M. J. Phys. Chem. B 2005, 109, 17984-17992) who recently carried out a density functional theory study of the mechanism of radical generation in the reagent under discussion in acetonitrile.  相似文献   

20.
减少铂用量和提高铂的抗中毒能力,是直接有机小分子燃料电池实用化过程期待解决的难题,由此而引发了广泛的研究,迄今已先后建立了许多的解决方案.作者也提出了基于氢钼/钨青铜(HxMo(W)O3,0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号