首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The synthesis and characterization of optically active amino acidato complexes of the types [(C5Me5)M(aa)Cl], [(p-cymene)Ru(aa)Cl], [(C5Me5)M(aa)(PPh3)]BF4, and [(p-cymene)Ru(aa)(PPh3)]BF4 (M = Rh, Ir; Haa = l-alanine, l-proline), in which the metal is a chiral centre, are reported. The cationic species were prepared via the solvato-complexes [(C5Me5)M(aa)(MeOH)]+ and [(p-cymene)Ru(aa)(MeOH)]+, which epimerize rapidly on the 1H NMR time scale. The crystal structure of the complex [(C5Me5)Ir(pro)Cl] is reported; the asymmetric unit contains two independent molecules differing in the configuration at the metal.  相似文献   

2.
Metal Complexes of Biologically Important Ligands. CIII. [1] Palladium(II), Platinum(II), Ruthenium(II), Rhodium(III), and Iridium(III) Complexes of Desoxyfructosazine The reactions of the pyrazine derivative desoxyfructosazin(pz) with K2PtCl4 and with the chlorobridged [M(PR3)Cl2]2 (M = Pd, Pt), [(η5-C5Me5)MCl2]2 and [(η6-p-Cymol)RuCl2]2 give the watersoluble complexes cis-Cl2Pt(pz)2, (R3P)(Cl)M(pz)M(Cl)(PR3) (M = Pd, Pt), (η5-C5Me5)(Cl)2M(pz)M(Cl)25-C5Me5) (M = Rh, Ir), (η6-p-Cymol)(Cl2)Ru(pz)Ru(Cl)26-p-Cymol).  相似文献   

3.
The preparation of new heterobinuclear compounds of formula [(p-cymene)RuX2(Pz)ML2] (M = Pd, X = Cl, L2 = C3H5, C4H7 or C8H11; Pz = pz 1; M = Rh, X = Cl or I, L2 = 5,6,7,8-tetrafluoro-1,4-dihydro-1,4-ethenonaphthalene, tfb, or bicyclo[2.2.1]heptadiene, nbd; Pz = pz or Mepz) is reported. One of the complexes, [(p-cymene)ClRu(μ-Cl)(μ-pz)Pd(C8H11)], has been characterized by single-crystal X-ray diffraction. The crystals are monoclinic, space group P21/c, with a 14.0044(10), b 14.9641(10), c 11.0456(5) Å, β 103.191(5)° and Z = 4. The structure has been refined to R = 0.064 for the 2850 observed reflexions with I ρ 3σ(I). The coordination of the Pd atom to the C8H11 ring system involves only three C atoms constituting a η3-allyl group, at 2.147(17), 2.101(15) and 2.119(17) Å from the Pd atom. The Ru-Pd distance is 3.516(1) Å, the two atoms being bridged by a chlorine atom and a pyrazolate group; the other chlorine atom is terminal.  相似文献   

4.
Reactions of 3,6-bis(2-pyridyl)-4-phenylpyridazine (Lph) with [(η6-arene)Ru(μ-Cl)Cl]2 (arene = C6H6, p-iPrC6H4Me and C6Me6), [(η5-C5Me5)M(μ-Cl)Cl]2, (M = Rh and Ir) and [(η5-Cp)Ru(PPh3)2Cl] (Cp = C5H5, C5Me5 and C9H7) afford mononuclear complexes of the type [(η6-arene)Ru(Lph)Cl]PF6, [(η5-C5Me5)M(Lph)Cl]PF6 and [(Cp)Ru(Lph)(PPh3)]PF6 with different structural motifs depending on the π-acidity of the ligand, electronic properties of the central metal atom and nature of the co-ligands. Complexes [(η6-C6H6)Ru(Lph)Cl]PF61, [(η6-p-iPrC6H4Me)Ru(Lph)Cl]PF62, [(η5-C5Me5)Ir(Lph)Cl]PF65, [(η5-Cp)Ru(PPh3)(Lph)]PF6, (Cp = C5H5, 6; C5Me5, 7; C9H7, 8) show the type-A binding mode (see text), while complexes [(η6-C6Me6)Ru(Lph)Cl]PF63 and [(η5-C5Me5)Rh(Lph)Cl]PF64 show the type-B binding mode (see text). These differences reflect the more electron-rich character of the [(η6-C6Me6)Ru(μ-Cl)Cl]2 and [(η5-C5Me5)Rh(μ-Cl)Cl]2 complexes compared to the other starting precursor complexes. Binding modes of the ligand Lph are determined by 1H NMR spectroscopy, single-crystal X-ray analysis as well as evidence obtained from the solid-state structures and corroborated by density functional theory calculations. From the systems studied here, it is concluded that the electron density on the central metal atom of these complexes plays an important role in deciding the ligand binding sites.  相似文献   

5.
The synthesis of half-sandwich binuclear transition-metal complexes containing the CabC,C chelate ligands (CabC,C = C2B10H10 (1)) is described. 1Li2 was reacted with chloride-bridged dimers [Cp∗RhCl(μ-Cl)]2 (Cp∗ = η5-C5(CH3)5), [Cp′RhCl(μ-Cl)]2 (Cp′ = η5-1,3-tBu2C5H3), [Cp∗IrCl(μ-Cl)]2 and [(p-cymene)RuCl(μ-Cl)]2 to give half-sandwich binuclear complexes [Cp∗Rh(μ-Cl)]2(CabC,C) (2), [Cp′Rh(μ-Cl)]2(CabC,C) [3),[Cp∗Ir(μ-Cl)]2(CabC,C) (4) and [(p-cymene)Ru(μ-Cl)]2(CabC,C) (5), respectively. Addition reactions of the ruthenium complex 5 with air gave [(p-cymene)2Ru2(μ-OH)(μ-Cl)](CabC,C) (6), rhodium complex 2 with LiSPh gave [Cp∗Rh(μ-SPh)]2(CabC,C) (7). The complexes were characterized by IR, NMR spectroscopy and elemental analysis. In addition, X-ray structure analysis were performed on complexes 2-7 where the potential C,C-chelate ligand was found to coordinate in a bidentate mode as a bridge.  相似文献   

6.
The reactivity of [Pt2(μ-S)2(PPh3)4] towards [RuCl26-arene)]2 (arene=C6H6, C6Me6, p-MeC6H4Pri=p-cymene), [OsCl26-p-cymene)]2 and [MCl25-C5Me5)]2 (M=Rh, Ir) have been probed using electrospray ionisation mass spectrometry. In all cases, dicationic products of the type [Pt2(μ-S)2(PPh3)4ML]2+ (L=π-hydrocarbon ligand) are observed, and a number of complexes have been prepared on the synthetic scale, isolated as their BPh4 or PF6 salts, and fully characterised. A single-crystal X-ray structure determination on the Ru p-cymene derivative confirms the presence of a pseudo-five-coordinate Ru centre. This resists addition of small donor ligands such as CO and pyridine. The reaction of [Pt2(μ-S)2(PPh3)4] with RuClCp(PPh3)2 (Cp=η5-C5H5) gives [Pt2(μ-S)2(PPh3)4RuCp]+. In addition, the reaction of [Pt2(μ-S)2(PPh3)4] with the related carbonyl complex [RuCl2(CO)3]2, monitored by electrospray mass spectrometry, gives [Pt2(μ-S)2(PPh3)4Ru(CO)3Cl]+.  相似文献   

7.
Treatment of [Cp*RuCl2]2, 1 , [(COD)IrCl]2, 2 or [(p-cymene)RuCl2]2, 3 (Cp*=η5-C5Me5, COD= 1,5-cyclooctadiene and p-cymene=η6-iPrC6H4Me) with heterocyclic borate ligands [Na[(H3B)L], L1 and L2 ( L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LAM(μ-H)2BHL] 4 – 6 ( 4 : LA=Cp*, M=Ru, L=amt; 5 : LA=Cp*, M=Ru, L=mp; 6 : LA=COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(μ-H)2BH(mp)}2], cis- 7 and trans- 7 . The isolation and structural characterization of fac- and mer-[Ru{(μ-H)2BH(mp)}{(μ-H)BH(mp)2}], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans- 7 , they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a – d .  相似文献   

8.
Half-sandwich complexes of formula [(ηn-ring)MClL]PF6 [L = (S)-2-[(Sp)-2-(diphenylphosphino)ferrocenyl]-4-isopropyloxazoline; (ηn-ring)M = (η5-C5Me5)Rh; (η5-C5Me5)Ir; (η6-p-MeC6H4iPr)Ru; (η6-p-MeC6H4iPr)Os] have been prepared and spectroscopically characterised. The molecular structures of the rhodium and iridium compounds have been determined by X-ray crystallography. The related solvate complexes [(η5-C5Me5)ML(Me2CO)]2+ (M = Rh, Ir) are active catalysts for the Diels-Alder reaction between methacrolein and cyclopentadiene.  相似文献   

9.
Chiral Half‐sandwich Pentamethylcyclopentadienyl Rhodium(III) and Iridium(III) Complexes with Schiff Bases from Salicylaldehyde and α‐Amino Acid Esters [1] A series of diastereoisomeric half‐sandwich complexes with Schiff bases from salicylaldehyde and L‐α‐amino acid esters including chiral metal atoms, [(η5‐C5H5)(Cl)M(N,O‐Schiff base)], has been obtained from chloro bridged complexes [(η5‐C5Me5)(Cl)M(μ‐Cl)]2 (M = Rh, Ir). Abstraction of chloride from these complexes with Ag[BF4] or Ag[SO3CF3] affords the highly sensitive compounds [(η5‐C5Me5)M(N,O‐Schiff base]+X? (M = Rh, Ir; X = BF4, CF3SO3) to which PPh3 can be added under formation of [(η5‐C5Me5)M(PPh3)(N,O‐Schiff base)]+X?. The diastereoisomeric ratio of the complexes ( 1 ‐ 7 and 11 ‐ 12 ) has been determined from NMR spectra.  相似文献   

10.
Chloride abstraction from the complexes [(η6-p-cymene){(IDipp)P}MCl] ( 2 a , M=Ru; 2 b , M=Os) and [(η5-C5Me5){(IDipp)P}IrCl] ( 3 b , IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) with sodium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (NaBArF) in the presence of trimethylphosphine (PMe3), 1,3,4,5-tetramethylimidazolin-2-ylidene (MeIMe) or carbon monoxide (CO) afforded the complexes [(η6-p-cymene){(IDipp)P}M(PMe3)]BArF] ( 4 a , M=Ru; 4 b , M=Os), [(η6-p-cymene){(IDipp)P}Os(MeIMe)]BArF] ( 5 ) and [(η5-C5Me5){(IDipp)P}IrL][BArF] ( 6 , L=PMe3; 7 , L=MeIMe; 8 , L=CO). These cationic N-heterocyclic carbene-phosphinidene complexes feature very similar structural and spectroscopic properties as prototypic nucleophilic arylphosphinidene complexes such as low-field 31P NMR resonances and short metal-phosphorus double bonds. Density functional theory (DFT) calculations reveal that the metal-phosphorus bond can be described in terms of an interaction between a triplet [(IDipp)P]+ cation and a triplet metal complex fragment ligand with highly covalent σ- and π-contributions. Crystals of the C−H activated complex 9 were isolated from solutions containing the PMe3 complex, and its formation can be rationalized by PMe3 dissociation and formation of a putative 16-electron intermediate [(η5-C5Me5)Ir{P(IDipp)}I][BArF], which undergoes C−H activation at one of the Dipp isopropyl groups and addition along the iridium-phosphorus bond to afford an unusual η3-benzyl coordination mode.  相似文献   

11.
The dinuclear compounds [C5Me5Rh(μ-PMe2)]2 (II) and [(C5Me5Rh)2(μ-PPh2(μ-X)] (X = PPh2 (III); X = Cl (IV); X = SMe (V)) react with CF3CO2H/NH4PF6 which protonates the metal-metal bond to give the complexes [(C5Me5Rh)2(μ-PMe2)2(μ-H)]PF6 (VI) and [(C5Me5Rh)2(μ-PPh2)(μ-X)(μ-H)]PF6 (VII–IX), respectively. The compound [C5Me5(CH3)Rh(μ-PMe2)2Rh(I)C5Me5] (X) is formed from II and methyl iodide. The reactions of VI with L = PMe3, PMe2H, P(OMe)3 and CNBut, by opening of the hydride bridge give the compounds [C5Me5(H)Rh(μ-PMe2)2Rh(L)C5Me5]PF6 (XI–XIV). In contrast, treatment of VI with CNMe and CNPh leads to insertion of the isocyanide into the (RhHRh) bond and to the formation of the μ-formimidoyl complexes [(C5Me5Rh)2(μ-PMe2)2(μ-HCNR)]PF6 (XV, XVI).  相似文献   

12.
The Conjugative Bridging of Organometallic Reaction Centers in Heterodinuclear Complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)]+, M = Rh or Ir ‐ Spectroscopic Consequences of Reductive Activation Heterodinuclear complexes [(OC)3ClRe(μ‐L)MCl(C5Me5)](PF6), M = Rh or Ir and L = 2, 5‐bis(1‐phenyliminoethyl)pyrazine (bpip), 3, 6‐bis(2‐pyridyl)‐1, 2, 4, 5‐tetrazine (bptz) or 2, 2′‐bipyrimidine (bpym), were synthesized via mononuclear rhenium compounds (L)Re(CO)3Cl. The stepwise reductive activation under chloride dissociation was studied through cyclic voltammetry and spectroelectrochemistry in the range of CO stretching vibrations (IR), charge transfer absorptions (UV/Vis) and electron spin resonance (ESR) for paramagnetic intermediates of the mono‐ and heterodinuclear compounds. While complexes of bpip and bptz form one‐electron reduced radical intermediates [(OC)3ClRe(μ‐L)MCl(C5Me5)] ˙ , the compounds with bpym react under MCl‐dissociative two‐electron reduction directly to [(OC)3ClRe(μ‐L)M(C5Me5)].  相似文献   

13.
The diastereoselective κ2-P,N-coordination of a chiral tricyclic β-iminophosphine ligand to the half-sandwich ruthenium(II) fragments [RuCl(η6-arene)]+ (arene = C6H6, p-cymene, 1,3,5-C6H3Me3, C6Me6), [Ru(η6-p-cymene)(NCMe)]2+ and [Ru(η5-C5H5)(NCMe)]+ is described. The structures of the resulting mono- and dicationic cymene derivatives have been confirmed by X-ray crystallography. Studies on the catalytic activity of these Ru(II) compounds in Diels–Alder cycloaddition processes are also reported.  相似文献   

14.
The new cationic mononuclear complexes [(η6-arene)Ru(Ph-BIAN)Cl]BF46-arene = benzene (1), p-cymene (2)], [(η5-C5H5)Ru(Ph-BIAN)PPh3]BF4 (3) and [(η5-C5Me5)M(Ph-BIAN)Cl]BF4 [M = Rh (4), Ir (5)] incorporating 1,2-bis(phenylimino)acenaphthene (Ph-BIAN) are reported. The complexes have been fully characterized by analytical and spectral (IR, NMR, FAB-MS, electronic and emission) studies. The molecular structure of the representative iridium complex [(η5-C5Me5)Ir(Ph-BIAN)Cl]BF4 has been determined crystallographically. Complexes 15 effectively catalyze the reduction of terephthaldehyde in the presence of HCOOH/CH3COONa in water under aerobic conditions and, among these complexes the rhodium complex [(η5-C5Me5)Rh(Ph-BIAN)Cl]BF4 (4) displays the most effective catalytic activity.  相似文献   

15.
Piano‐stool‐shaped platinum group metal compounds, stable in the solid state and in solution, which are based on 2‐(5‐phenyl‐1H‐pyrazol‐3‐yl)pyridine ( L ) with the formulas [(η6‐arene)Ru( L )Cl]PF6 {arene = C6H6 ( 1 ), p‐cymene ( 2 ), and C6Me6, ( 3 )}, [(η6‐C5Me5)M( L )Cl]PF6 {M = Rh ( 4 ), Ir ( 5 )}, and [(η5‐C5H5)Ru(PPh3)( L )]PF6 ( 6 ), [(η5‐C5H5)Os(PPh3)( L )]PF6 ( 7 ), [(η5‐C5Me5)Ru(PPh3)( L )]PF6 ( 8 ), and [(η5‐C9H7)Ru(PPh3)( L )]PF6 ( 9 ) were prepared by a general method and characterized by NMR and IR spectroscopy and mass spectrometry. The molecular structures of compounds 4 and 5 were established by single‐crystal X‐ray diffraction. In each compound the metal is connected to N1 and N11 in a k2 manner.  相似文献   

16.
Metal Complexes of Biologically Important Ligands. XCV. η5-Pentamethylcyclopentadienyl Rhodium, Iridium, η6- Benzene Ruthenium, and Phosphine Palladium Complexes of Proline Methylester and Proline Amide Proline methylester (L1) and proline amide (L2) give with the chloro bridged complexes [(η5 -C5Me5)MCl2]2 (M ? Rh, Ir), [(η6 -benzene)RuCl2]2 and [Et3PPdCl2]2 N and N,O coordinated compounds: (η5 -C5Me5)M(Cl2)L1 ( 1, 2 M ? Rh, Ir), [(η5-C5Me5) Rh(Cl)(L2)]+Cl? ( 5 ), [(η6- C6Me6) Ru(Cl)(L2)]+Cl? ( 6 ), [(η6-p-cymene)Ru(Cl)(L2)]+Cl? ( 7 ), [(eta;5-C5Me5)M(Cl)(L2-H+)] ( 9, 10 M ? Rh, Ir), (Et3P)Pd(Cl)2L1 ( 3 ), and [(Et3P)Pd(Cl)(L2)]+Cl? ( 8 ). The NMR spectra indicate that for 5 and 6 only one diastereoisomer is formed. The complexes 1, 2, 3 and 5 were characterized by X-ray diffraction.  相似文献   

17.
The complexes [C5Me5MMe2(Me2SO)] (Ia, M = Rh; Ib, M = Ir) react with p-toluenesulphonic acid in acetonitrile to give [C5Me5MMe(Me2SO)(MeCN)]+, (II), and with trifluoroacetic acid to give first [C5Me5MMe(Me2SO)(O2CCF3)] and then [C5Me5M(Me2SO)(O2CCF3)2]. Complexes II react with halide (X?) to give the halomethyl complexes [C5Me5MMe(X)(Me2SO)]. The IR, far-IR, 1H and 13C NMR spectra are all in agreement with structures proposed.  相似文献   

18.
Synthesis, structure, and reactivity of carboranylamidinate‐based half‐sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μCl)Cl}2] (M=Ir, Rh; Cp*=η5‐C5Me5) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18‐electron complexes [Cp*IrCl(CabN‐DIC)] ( 1 a ; CabN‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NHiPr)]), [Cp*RhCl(CabN‐DIC)] ( 1 b ), and [Cp*RhCl(CabN‐DCC)] ( 1 c ; CabN‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NHCy)]). A series of 16‐electron half‐sandwich Ir and Rh complexes [Cp*Ir(CabN′‐DIC)] ( 2 a ; CabN′‐DIC=[iPrN?C(closo‐1,2‐C2B10H10)(NiPr)]), [Cp*Ir(CabN′‐DCC)] ( 2 b , CabN′‐DCC=[CyN?C(closo‐1,2‐C2B10H10)(NCy)]), and [Cp*Rh(CabN′‐DIC)] ( 2 c ) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(CabN,S‐DIC)], [Cp*M(CabN,S‐DCC)] (M=Ir 3 a , 3 b ; Rh 3 c , 3 d ), formed through BH activation, are obtained by reaction of [{Cp*MCl2}2] with carboranylamidinate sulfides [RN?C(closo‐1,2‐C2B10H10)(NHR)]S? (R=iPr, Cy), which can be prepared by inserting sulfur into the C? Li bond of lithium carboranylamidinates. Iridium complex 1 a shows catalytic activities of up to 2.69×106 gPNB ${{\rm{mol}}_{{\rm{Ir}}}^{ - {\rm{1}}} }Synthesis, structure, and reactivity of carboranylamidinate-based half-sandwich iridium and rhodium complexes are reported for the first time. Treatment of dimeric metal complexes [{Cp*M(μ-Cl)Cl}(2)] (M = Ir, Rh; Cp* = η(5)-C(5)Me(5)) with a solution of one equivalent of nBuLi and a carboranylamidine produces 18-electron complexes [Cp*IrCl(Cab(N)-DIC)] (1?a; Cab(N)-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NHiPr)]), [Cp*RhCl(Cab(N)-DIC)] (1?b), and [Cp*RhCl(Cab(N)-DCC)] (1?c; Cab(N)-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10))(NHCy)]). A series of 16-electron half-sandwich Ir and Rh complexes [Cp*Ir(Cab(N')-DIC)] (2?a; Cab(N')-DIC = [iPrN=C(closo-1,2-C(2)B(10)H(10))(NiPr)]), [Cp*Ir(Cab(N')-DCC)] (2?b, Cab(N')-DCC = [CyN=C(closo-1,2-C(2)B(10)H(10)(NCy)]), and [Cp*Rh(Cab(N')-DIC)] (2?c) is also obtained when an excess of nBuLi is used. The unexpected products [Cp*M(Cab(N,S)-DIC)], [Cp*M(Cab(N,S)-DCC)] (M = Ir 3?a, 3?b; Rh 3?c, 3?d), formed through BH activation, are obtained by reaction of [{Cp*MCl(2)}(2)] with carboranylamidinate sulfides [RN=C(closo-1,2-C(2)B(10)H(10))(NHR)]S(-) (R = iPr, Cy), which can be prepared by inserting sulfur into the C-Li bond of lithium carboranylamidinates. Iridium complex 1?a shows catalytic activities of up to 2.69×10(6) g(PNB) mol(Ir)(-1) h(-1) for the polymerization of norbornene in the presence of methylaluminoxane (MAO) as cocatalyst. Catalytic activities and the molecular weight of polynorbornene (PNB) were investigated under various reaction conditions. All complexes were fully characterized by elemental analysis and IR and NMR spectroscopy; the structures of 1?a-c, 2?a, b; and 3?a, b, d were further confirmed by single crystal X-ray diffraction.  相似文献   

19.
Reaction of Ph2PNHCH2-C4H3S with [Ru(η6-p-cymene)(μ-Cl)Cl]2, [Ru(η6-benzene)(μ-Cl)Cl]2, [Rh(μ-Cl)(cod)]2 and [Ir(η5-C5Me5)(μ-Cl)Cl]2 yields complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1, [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2, [Rh(Ph2PNHCH2-C4H3S)(cod)Cl], 3 and [Ir(Ph2PNHCH2-C4H3S)(η5-C5Me5)Cl2], 4, respectively. All complexes were isolated from the reaction solution and fully characterized by analytical and spectroscopic methods. The structure of [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 was also determined by single crystal X-ray diffraction. 1-4 are suitable precursors forming highly active catalyst in the transfer hydrogenation of a variety of simple ketones. Notably, the catalysts obtained by using the ruthenium complexes [Ru(Ph2PNHCH2-C4H3S)(η6-p-cymene)Cl2], 1 and [Ru(Ph2PNHCH2-C4H3S)(η6-benzene)Cl2], 2 are much more active in the transfer hydrogenation converting the carbonyls to the corresponding alcohols in 98-99% yields (TOF ≤ 200 h−1) in comparison to analogous rhodium and iridium complexes.  相似文献   

20.
The mononuclear cationic complexes [(η6-C6H6)RuCl(L)]+ (1), [(η6-p-iPrC6H4Me)RuCl(L)]+ (2), [(η5-C5H5)Ru(PPh3)(L)]+ (3), [(η5-C5Me5)Ru(PPh3)(L)]+ (4), [(η5-C5Me5)RhCl(L)]+ (5), [(η5-C5Me5)IrCl(L)]+ (6) as well as the dinuclear dicationic complexes [{(η6-C6H6)RuCl}2(L)]2+ (7), [{(η6-p-iPrC6H4Me)RuCl}2(L)]2+ (8), [{(η5-C5H5)Ru(PPh3)}2(L)]2+ (9), [{(η5-C5Me5)Ru(PPh3)}2(L)]2+ (10), [{(η5-C5Me5)RhCl}2(L)]2+ (11) and [{(η5-C5Me5)IrCl}2(L)]2+ (12) have been synthesized from 4,4′-bis(2-pyridyl-4-thiazole) (L) and the corresponding complexes [(η6-C6H6)Ru(μ-Cl)Cl]2, [(η6-p-iPrC6H4Me)Ru(μ-Cl)Cl]2, [(η5-C5H5)Ru(PPh3)2Cl)], [(η5-C5Me5)Ru(PPh3)2Cl], [(η5-C5Me5)Rh(μ-Cl)Cl]2 and [(η5-C5Me5)Ir(μ-Cl)Cl]2, respectively. All complexes were isolated as hexafluorophosphate salts and characterized by IR, NMR, mass spectrometry and UV-vis spectroscopy. The X-ray crystal structure analyses of [3]PF6, [5]PF6, [8](PF6)2 and [12](PF6)2 reveal a typical piano-stool geometry around the metal centers with a five-membered metallo-cycle in which 4,4′-bis(2-pyridyl-4-thiazole) acts as a N,N′-chelating ligand.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号