首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
The reaction of Ni(COD)(2), IPr, and nitrile affords dimeric [Ni(IPr)RCN](2) in high yields. X-ray analysis revealed these species display simultaneous η(1)- and η(2)-nitrile binding modes. These dimers are catalytically competent in the formation of pyridines from the cycloaddition of diynes and nitriles. Kinetic analysis showed the reaction to be first order in [Ni(IPr)RCN](2), zeroth order in added IPr, zeroth order in nitrile, and zeroth order in diyne. Extensive stoichiometric competition studies were performed, and selective incorporation of the exogenous, not dimer bound, nitrile was observed. Post cycloaddition, the dimeric state was found to be largely preserved. Nitrile and ligand exchange experiments were performed and found to be inoperative in the catalytic cycle. These observations suggest a mechanism whereby the catalyst is activated by partial dimer-opening followed by binding of exogenous nitrile and subsequent oxidative heterocoupling.  相似文献   

2.
An N‐heterocyclic carbene (NHC)‐catalyzed reaction between α‐bromoenals and 2‐aminoaldehydes has been developed. Key steps include chemoselective reaction of the NHC catalyst with one of the aldehyde substrates (the bromoenal) to eventually generate an α,β‐unsaturated acylazolium intermediate. Addition of the nitrogen atom of aminoaldehyde to the unsaturated azolium ester intermediate followed by intramolecular aldol reaction, β‐lactone formation, and decarboxylation leads to chiral dihydroquinolines with high optical purity. The dihydroquinoline products, which are quickly prepared by using this method, can be readily transformed into a diverse set of functional molecules such as pyridines and chiral piperidines.  相似文献   

3.
A mild and general route for preparing pyridines from nitriles and diynes is described. Ni/imidazolyidene complexes were used to mediate cyclization alkynes and both aryl and alkyl nitriles at ambient temperature. In addition, the efficacy of this protocol allows for the preparation of a fused seven-membered pyridone and for intermolecular cyclizations. When an asymmetrical diyne was employed, cyclization afforded a single pyridine regioisomer.  相似文献   

4.
Cross‐dimerization of a methylenecyclopropane ( 1 ) and an unactivated alkene ( 2 ) with typical hydroalkenylation reactivity was observed for the first time by using a [NHC‐Ni(allyl)]BArF catalyst (NHC=N‐heterocyclic carbene). Results show that the C?C cleavage of 1 did not involve a Ni0 oxidative addition, which was crucial in former systems. Thus the method reported here emerges as a complementary method for attaining highly chemo‐ and regioselective synthesis of methylenecyclopentanes ( 3 ) with broad scope. An efficient NHC/NiII‐catalyzed rearrangement of 1 leads to the convergent synthesis of 3 in the presence of 2 .  相似文献   

5.
A general methodology for the α‐arylation of ketones using a nickel catalyst has been developed. The new well‐defined [Ni(IPr*)(cin)Cl] ( 1 c ) pre‐catalyst showed great efficiency for this transformation, allowing the coupling of a wide range of ketones, including acetophenone derivatives, with various functionalised aryl chlorides. This cinnamyl‐based Ni–N‐heterocyclic carbene (NHC) complex has demonstrated a different behaviour to previously reported NHC‐Ni catalysts. Preliminary mechanistic studies suggest a Ni0/NiII catalytic cycle to be at play.  相似文献   

6.
As less attention has been focussed on the design of highly efficient palladium precatalysts to ensure the smooth formation of the active catalyst for metal‐mediated cross coupling reactions, we herein demonstrate that combining the bulky N‐heterocyclic carbene (NHC) 1,3‐bis(2,6‐diisopropylphenyl)imidazol‐2‐ylidene (IPr) with cyclopalladated acetanilide as the optimal palladium precatalyst leads to superior catalytic activity compared with the state‐of‐the‐art NHC–Pd catalysts. The complex was discovered through the evaluation of a small, rationally designed library of NHC–palladacycles prepared by a novel, practical and atom‐economic method, the direct reaction of IPr?HCl with palladacycle acetate dimers.  相似文献   

7.
The mechanistic details of nickel-catalyzed reduction of CO(2) with catecholborane (HBcat) have been studied by DFT calculations. The nickel pincer hydride complex ({2,6-C(6)H(3)(OP(t)Bu(2))(2)}NiH = [Ni]H) has been shown to catalyze the sequential reduction from CO(2) to HCOOBcat, then to CH(2)O, and finally to CH(3)OBcat. Each process is accomplished by a two-step sequence at the nickel center: the insertion of a C═O bond into [Ni]H, followed by the reaction of the insertion product with HBcat. Calculations have predicted the difficulties of observing the possible intermediates such as [Ni]OCH(2)OBcat, [Ni]OBcat, and [Ni]OCH(3), based on the low kinetic barriers and favorable thermodynamics for the decomposition of [Ni]OCH(2)OBcat, as well as the reactions of [Ni]OBcat and [Ni]OCH(3) with HBcat. Compared to the uncatalyzed reactions of HBcat with CO(2), HCOOBcat, and CH(2)O, the nickel hydride catalyst accelerates the H(δ-) transfer by lowering the barriers by 30.1, 12.4, and 19.6 kcal/mol, respectively. In general, the catalytic role of the nickel hydride is similar to that of N-heterocyclic carbene (NHC) catalyst in the hydrosilylation of CO(2). However, the H(δ-) transfer mechanisms used by the two catalysts are completely different. The H(δ-) transfer catalyzed by [Ni]H can be described as hydrogen being shuttled from HBcat to nickel center and then to the C═O bond, and the catalyst changes its integrity during catalysis. In contrast, the NHC catalyst simply exerts an electronic influence to activate either the silane or CO(2), and the integrity of the catalyst remains intact throughout the catalytic cycle. The comparison between [Ni]H and Cp(2)Zr(H)Cl in the stoichiometric reduction of CO(2) has suggested that ligand sterics and metal electronic properties play critical roles in controlling the outcome of the reaction. A bridging methylene diolate complex has been previously observed in the zirconium system, whereas the analogous [Ni]OCH(2)O[Ni] is not a viable intermediate, both kinetically and thermodynamically. Replacing HBcat with PhSiH(3) in the nickel-catalyzed reduction of CO(2) results in a high kinetic barrier for the reaction of [Ni]OOCH with PhSiH(3). Switching silanes to HBcat in NHC-catalyzed reduction of CO(2) generates a very stable NHC adduct of HCOOBcat, which makes the release of NHC less favorable.  相似文献   

8.
《Tetrahedron letters》2019,60(46):151260
It was reported to develop a simple and convenient method for the Ni/NHC-catalyzed cross-coupling of methyl sulfinates and amines without an acid/base to afford secondary or tertiary sulfinamides in moderate to good yields. The method can provide the desired products with broad substrate scope, good chemoselectivity and good functional group compatibility. The presented approach may enrich the Ni/NHC catalyst system and promote the applications of methyl sulfinates in the organic sulfur chemistry.  相似文献   

9.
A cross‐hydroalkenylation/rearrangement cascade (HARC), using a cyclopropene and alkyne as substrate pairs, was achieved for the first time by using new [(NHC)Ni(allyl)]BArF catalysts (NHC=N‐heterocyclic carbenes). By controlling the (NHC)NiIIH relative insertion reactivity with cyclopropene and alkyne, a broad scope of cyclopentadienes was obtained with highly selectively. The structural features of the new (NHC)NiII catalyst were important for the success of the reaction. The mild reaction conditions employed may serve as an entry for exploring (NHC)NiII‐assisted vinylcyclopropane rearrangement reactivity.  相似文献   

10.
The cross-coupling reaction of aryl halides with aliphatic and aromatic thiols catalyzed by readily available Ni(OAc)2 with N-heterocyclic carbene (NHC) is reported. Ni(OAc)2/NHC catalyst showed good activities toward various aryl halides in C-S coupling reaction, even with aryl chlorides. Reactions occurred in excellent yields, broad scope, and high tolerance of functional groups.  相似文献   

11.
Gray BL  Wang X  Brown WC  Kuai L  Schreiber SL 《Organic letters》2008,10(13):2621-2624
Recognizing the value of including complex pyridines in small-molecule screening collections, we developed a previously unexplored [2 + 2 + 2]-cycloaddition of silyl-tethered diynes with nitriles. The tether provides high regioselectivity, while the solvent THF allows catalytic CpCo(CO)(2) to be used without exogenous irradiation. One of the resulting bicyclic and monocyclic (desilylated) pyridines was identified as an inhibitor of neuregulin-induced neurite outgrowth (EC(50) = 0.30 microM) in a screen that probes a pathway likely to be involved in breast cancers and schizophrenia.  相似文献   

12.
Two NHC–Pd(II) complexes synthesized from trans‐cyclohexane‐1,2‐diamine were fairly effective in the NHC–Pd(II) complex/Cu co‐catalyzed terminal alkyne homocoupling reaction to give the corresponding symmetrical 1,4‐disubstituted 1,3‐diynes in good yields under mild conditions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
Nickel(II) complexes of bidentate N-heterocyclic carbene (NHC)/phosphane ligand L were prepared and structurally characterized. Unlike palladium, which forms [PdCl(2)(L)], the stable nickel product isolated is the ionic [Ni(L)(2)]Cl(2). These Ni(II) complexes are highly robust in air. Among different N-substituents on the ligand framework, the nickel complex of ligand L bearing N-1-naphthylmethyl groups (2 a) is a highly effective catalyst for Suzuki cross-coupling between phenylboronic acid and a range of aryl halides, including unreactive aryl chlorides. The activities of 2 a are largely superior to those of other reported nickel NHC complexes and their palladium counterparts. Unlike the previously reported [NiCl(2)(dppe)] (dppe=1,2-bis(diphenylphosphino)ethane), 2 a can effectively catalyze the cross-coupling reaction without the need for a catalytic amount of PPh(3), and this suggests that the PPh(2) functionality of hybrid NHC ligand L can partially take on the role of free PPh(3). However, for unreactive aryl chlorides at low catalyst loading, the presence of PPh(3) accelerates the reaction.  相似文献   

14.
Transition metal complex catalyzed cocyclotrimerization of protected alkynylpurine ribonucleosides 1 with various diynes 2 gave rise to a series of 6-arylpurine nucleosides 3 that were further deprotected to free nucleosides 4. Generally, the best yields of cyclotrimerizations were obtained with a catalytic system Ni(cod)2/2PPh(3). On the other hand, CoBr(PPh(3))3 proved to be a superior catalyst for cyclotrimerization of 1 with dipropargyl ether 2g. In addition, Ni catalysis is also suitable for direct cyclotrimerization of unprotected alkynylpurine ribonucleosides 5 to the corresponding 6-arylpurinylribosides 4.  相似文献   

15.
A novel Pd−NHC functionalized metal–organic framework (MOF) based on MIL-101(Cr) was synthesized and used as an efficient heterogeneous catalyst in the C-C bond formation reactions. Using this heterogeneous Pd catalyst system, the Suzuki−Miyaura coupling reaction was accomplished well in water, and coupling products were obtained in good to excellent yields in short reaction time. The Pd−NHC−MIL-101(Cr) was characterized using some different techniques, including Fourier transform-infrared, X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, inductively coupled plasma and elemental analysis. The microscopic techniques showed the discrete octahedron structure of MIL-101(Cr), which is also stable after chemical modification process to prepare the catalyst system. The TEM images of the catalyst showed the existence of palladium nanoparticles immobilized in the structure of the catalyst, while no reducing agent was used. It seems that the NHC groups and imidazolium moieties in the structure of the MOF can reduce Pd (II) to Pd (0) species. This modified MOF substrate can also prevent aggregation of Pd nanoparticles, resulting in high stability of them in organic transformation. The Pd−NHC−MIL-101(Cr) catalyst system could be simply extracted from the reaction mixture, providing an efficient synthetic method for the synthesis of biaryls derivatives using the aforementioned coupling reaction. The Pd−NHC−MIL-101(Cr) catalyst could be recycled in this organic reaction with almost consistent catalytic efficiency.  相似文献   

16.
A new method leading to Ni(NHC)2 (NHC = IMes, IPri, SIPr(i), SIBu(t)) complexes in moderate to good yields, involves the reaction of NHC (pre-formed or generated in situ) with Ni(CH3)2(tmed), tmed = N,N'-tetramethylethylenediamine; in one case, the intermediate Ni[I(Me2)Pr(i)]2(CH3)2, I(Me2)Pr(i) = N,N'-diisopropyl-4,5-dimethylimidazol-2-ylidene, has been isolated and structurally characterised.  相似文献   

17.
N-Heterocyclic carbene (NHC) ligands are ubiquitously utilized in catalysis. A common catalyst design model assumes strong M–NHC binding in this metal–ligand framework. In contrast to this common assumption, we demonstrate here that lability and controlled cleavage of the M−NHC bond (rather than its stabilization) could be more important for high-performance catalysis at low catalyst concentrations. The present study reveals a dynamic stabilization mechanism with labile metal–NHC binding and [PdX3][NHC-R]+ ion pair formation. Access to reactive anionic palladium intermediates formed by dissociation of the NHC ligands and plausible stabilization of the molecular catalyst in solution by interaction with the [NHC-R]+ azolium ion is of particular importance for an efficient and recyclable catalyst. These ionic Pd/NHC complexes allowed for the first time the recycling of the complex in a well-defined form with isolation at each cycle. Computational investigation of the reaction mechanism confirms a facile formation of NHC-free anionic Pd in polar media through either Ph–NHC coupling or reversible H–NHC coupling. The present study formulates novel ideas for M/NHC catalyst design.  相似文献   

18.
The synthesis and characterization of three- and four-coordinate Ni(CO)n(NHC) (n = 2, 3; NHC = N-heterocyclic carbene) complexes are reported. Reactions with CO of the Ni(CO)2(NHC) complexes lead to the quantitative formation of Ni(CO)4. Investigation of this reaction under equilibrium conditions allows for the determination of Ni-NHC bond dissociation energies.  相似文献   

19.
In the presence of a Ni(0)/NHC catalyst, an equimolar mixture of aliphatic and aryl aldehydes can be employed to selectively yield a single cross-coupled ester. This reaction can be applied to a variety of aliphatic (1°, 2°, cyc-2°, and 3°) and aryl aldehyde combinations. The reaction represents 100% atom efficiency and generates no waste. Mechanistic studies have revealed that the striking feature of the reaction is the simultaneous coordination of two aldehydes to Ni(0).  相似文献   

20.
Cross‐hydroalkenylation of a vinyl ether ( 1 ) with an α‐olefin ( 2 ) was first achieved by a set of [NHC‐Ni(allyl)]BArF (NHC=N‐heterocyclic carbene) catalysts. Both 1,2‐ and 1,3‐disubstituted allyl ethers were obtained, highly selectively, by using NHCs of different sizes. In contrast, the chemoselectivity (i.e., 1 as acceptor and 2 as donor) was controlled mostly by electronic effects through the catalyst–substrate interaction. Sterically bulkier alkenes ( 2 ) were used as preferred donors compared to smaller alkenes. This electronic effect also served as a basis for the first tail‐to‐head cross‐hydroalkenylations of 1 with either a vinyl silane or boronic ester.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号