首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Quasiclassical trajectory calculations were carried out to study the dynamics of energy transfer and collision-induced dissociation (CID) of CH(3)SH(+) + Ar at collision energies ranging from 4.34 to 34.7 eV. The relative abundances calculated for the most relevant product ions are found to be in good agreement with experiment, except for the lowest energies investigated. In general, the dissociation to form CH(3)(+) + SH is the dominant channel, even though it is not among the energetically favored reaction pathways. The results corroborate that this selective dissociation observed upon collisional activation arises from a more efficient translational to vibrational energy transfer for the low-frequency C-S stretching mode than for the high-frequency C-H stretching modes, together with weak couplings between the low- and high-frequency modes of vibration. The calculations suggest that CID takes place preferentially by a direct CH(3)(+) + SH detachment, and more efficiently when the Ar atom collides with the methyl group-side of CH(3)SH(+).  相似文献   

2.
The CH5+ molecular ion is well-known for its large amplitude motions that lead to complete scrambling of the hydrogen atoms, even in the vibrational ground state. Experiments have been reported that probe the consequences of these large amplitude motions. We recently reported that quantum zero-point effects partially quench the scrambling when CH5+ is partially deuterated. Here, the consequences of this quantum localization are investigated through calculations of the low-resolution spectra of CH4D+, CHD4+, and CD5+. The spectra are obtained by convoluting stick spectra, evaluated for individual stationary points on an ab initio potential surface, multiplying them by Diffusion Monte Carlo ground state density at that stationary point, and taking the sum. The CH/D stretch regions of CH4D+ and CD5+ are red-shifted relative to CH5+, while the overall shape of the envelope remains unaffected. In contrast, for CHD4+, the shape of the spectral envelope in the CH/D stretch region differs from the other three isotopologs. These signatures of the quantum localization of the deuterium on the spectra are discussed.  相似文献   

3.
A full-dimensional, ab initio based potential energy surface (PES) for CH(5)(+), which can describe dissociation is reported. The PES is a precise fit to 36173 coupled-cluster [CCSD(T)] calculations of electronic energies done using an aug-cc-pVTZ basis. The fit uses a polynomial basis that is invariant with respect to permutation of the five H atoms, and thus describes all 120 equivalent minima. The rms fitting error is 78.1 cm(-1) for the entire data set of energies up to 30,000 cm(-1) and a normal-mode analysis of CH(5)(+) also verifies the accuracy of the fit. Two saddle points have been located on the surface as well and compared with previous theoretical work. The PES dissociates correctly to the fragments CH(3)(+) + H(2) and the equilibrium geometry and normal-mode analyses of these fragments are also presented. Diffusion Monte Carlo calculations are done for the zero-point energies of CH(5)(+) (and some isotopologs) as well as for the separated fragments of CH(5)(+), CH(3)(+) + H(2) and those of CH(4)D(+), CH(3)(+) + HD and CH(2)D(+) + H(2). Values of D(0) are reported for these dissociations. A molecular dynamics calculation of CH(4)D(+) dissociation at one total energy is also performed to both validate the applicability of the PES for dynamics studies as well as to test a simple classical statistical prediction of the branching ratio of the dissociation products.  相似文献   

4.
Site-specific fragmentations following S 2p and O 1s photoexcitation of thioacetic acid, CH3C(O)SH, have been studied by means of synchrotron radiation. Total ion yield (TIY) spectra were measured and multicoincidence techniques, which include photoelectron-photoion coincidence (PEPICO) and photoelectron-photoion-photoion coincidence (PEPIPICO) time-of-flight mass spectrometry, were applied. The equivalent-core approximation was employed in order to estimate ionization transition values, and the observed peaks were tentatively assigned. A site-specific fragmentation is moderately observed by comparing the mass spectra collected at resonant energies around the inner and shallow inner shell S 2p and O 1s ionization edges. Beside H+ ion, the most abundant ions observed at the S 2p edge excitation were CH3CO+, SH+, S+, and CH3+. At the O 1s region the large CH3CO+ fragment was depressed, and small CHx+ (x = 0, 1, 2, 3), S+, and SH+ fragments were dominant. The dissociation dynamic for the main ion-pair production has been discussed. Two- and three-body dissociation channels have been observed in the PEPIPICO spectra, and the dissociation mechanisms were proposed.  相似文献   

5.
在243~263 nm紫外光波段通过质量选择光电离激发谱研究了丙酮(CH3COCH3)的光化学反应通道。分析母体离子CH3COCH3+和碎片离子CH3CO+ 、 CH3+的光电离激发谱和质谱峰宽可以知道: 此光波段丙酮分子的光化学反应主要包括了丙酮分子经由(S1,T1)中间态产生母体离子的(1+1)双光子电离通道,母体离子进一步解离产生碎片离子CH3+的“光电离-光解离”通道和丙酮分子经由(S1,T1)中间态解离成中性自由基碎片CH3CO后再进一步被双光子电离的“光解离-光电离”通道。由母体离子光电离激发谱双光子阈值波长(255.67 nm)给出的丙酮电离势(IP)为(9.696±0.004)eV。  相似文献   

6.
The laser-induced fluorescence excitation, dispersed fluorescence, and IR-UV double resonance spectra of chiral (+/-)-indan-1-ol have been measured in a supersonic expansion. Three low energy conformers of the molecule have been identified, and the ground state vibrational modes of each conformer are tentatively assigned with the aid of quantum chemistry calculations. The frequencies of the nu(OH) and nu(CH) stretch modes of the two most abundant conformers have been measured by fluorescence dip IR spectroscopy and have been used for their assignment. The dispersed fluorescence spectra clearly indicate the coupling of low-frequency modes, as was seen in other substituted indanes such as 1-aminoindan and 1-amino-2-indanol. (R)- and (S)-indan-1-ol distinctly form different types of clusters with (R)- and (S)- methyl- and ethyl-lactate. Both hetero- and homochiral clusters are characterized by complex spectra which exhibit a progression built on low-frequency intermolecular modes.  相似文献   

7.
Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF(3), CrF(3), and NiF(3), which possess spatially doubly degenerate excited states ((M)E) of even spin multiplicities (M = 2 or 4). The ground states of TiF(3), CrF(3), and NiF(3) are nondegenerate and exhibit minima of D(3h) symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF(3) and CrF(3) are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF(3) is only partially quenched by JT coupling.  相似文献   

8.
The reactions of BH2+ with propylene (CH2=CHCH3) to form both the adducts BC3H8+ and the H2-elimination products BC3H6+ + H2 have been investigated at the density functional B3LYP/6-311G(d,p) level of theory. It is shown that the electrophilic attacks of BH2+ towards two olefinic carbons of H2C=CHCH3 and two subsequent 1,3-H-shifts may form four low-lying BC3H8+ isomers (with the relative energies in parentheses in kcal/mol): 1 BH2+.CH2CHCH3 (0.0), 1' BH2+.CH3CHCH2 (6.3), 3 BHCH2CH2CH3+ (4.3), and 4 BHCH(CH3)2+ (5.0), respectively. On the other hand, further H2-eliminations may also occur easily between B-C bonds of isomers 1 and 1' and between C-C bonds of isomers 3 and 4 to form two dissociation products (P1) HBCHCHCH3+ + H2 and (P2) HBC(CH3)CH2+ + H2, with H2-elimination from isomer 1 to be energetically most favorable. According to our calculated mechanism, the collisional stabilization processes of low-lying isomers 1, 1', 3, and 4 may compete extensively with their H2-eliminations processes for the title reaction, leading mainly to some linear carborane cations. This study may be helpful for understanding the stereochemical aspects of borohydride cations towards alkylenes.  相似文献   

9.
Rotationally resolved pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the X-->X+ transition in ethylene and ethylene-d4 have been recorded at a resolution of 0.09 cm(-1). The spectra provide new information on the large amplitude torsional motion in the cationic ground state. An effective one-dimensional torsional potential was determined from the experimental data. Both C2H4+ and C2D4+ exhibit a twisted geometry, and the lowest two levels of the torsional potential form a tunneling pair with a tunneling splitting of 83.7(5) cm(-1) in C2H4+ and of 37.1(5) cm(-1) in C2D4+. A model was developed to quantitatively analyze the rotational structure of the photoelectron spectra by generalizing the model of Buckingham, Orr, and Sichel [Philos. Trans. R. Soc. London, Ser. A 268, 147 (1970)] to treat asymmetric top molecules. The quantitative analysis of the rotational intensity distributions of allowed as well as forbidden vibrational bands enabled the identification of strong vibronic mixing between the X+ and A+ states mediated by the torsional mode nu(4) and a weaker mixing between the X+ and B+ states mediated by the symmetric CH2 out-of-plane bending mode nu7. The vibrational intensities could be accounted for quantitatively using a Herzberg-Teller-type model for vibronic intensity borrowing. The adiabatic ionization energies of C2H4 and C2D4 were determined to be 84 790.42(23) cm(-1) and 84 913.3(14) cm(-1), respectively.  相似文献   

10.
Rare earth doped oxyfluoroborate glasses have been prepared with different concentration of Eu3+. The UV-Vis/NIR optical absorption, laser induced fluorescence and photoacoustic spectra of Eu3+ in this host have been studied. Different optical parameters such as oscillator strength, Judd-Ofelt intensity parameter, stimulated emission cross-section, transition probability, branching ratio and radiative lifetime, etc. have been calculated. Lifetime of the 5D0 level at various concentrations of Eu3+ have been used to explain the concentration dependent fluorescence quenching. The mechanism of quenching was found to be dipole-dipole. Energy transfer have also been studied from Eu3+ to Pr3+ in sample with 1 mol% (Eu3+) + 1 mol% Pr3+.  相似文献   

11.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following the excitation of high OH stretch overtones is studied by quasi-classical molecular dynamics calculations using a global potential energy surface (PES) fitted to ab initio calculations. The PES includes CH(2)OH and CH(3)O minima, dissociation products, and all relevant barriers. Its analysis shows that the transition states for OH bond fission and isomerization are both very close in energy to the excited vibrational levels reached in recent experiments and involve significant geometry changes relative to the CH(2)OH equilibrium structure. The energies of key stationary points are refined using high-level electronic structure calculations. Vibrational energies and wavefunctions are computed by coupled anharmonic vibrational calculations. They show that high OH-stretch overtones are mixed with other modes. Consequently, trajectory calculations carried out at energies about ~3000 cm(-1) above the barriers reveal that despite initial excitation of the OH stretch, the direct OH bond fission is relatively slow (10 ps) and a considerable fraction of the radicals undergoes isomerization to the methoxy radical. The computed dissociation energies are: D(0)(CH(2)OH → CH(2)O + H) = 10,188 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,167 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,787 cm(-1). All are in excellent agreement with the experimental results. For CH(2)OH, the barriers for the direct OH bond fission and isomerization are: 14,205 and 13,839 cm(-1), respectively.  相似文献   

12.
A beam containing CH(4), Cl(2), and He is expanded into a vacuum chamber where CH(4) is prepared via infrared excitation in a combination band consisting of one quantum of excitation each in the bending and torsional modes (nu(2)+nu(4)). The reaction is initiated by fast Cl atoms generated by photolysis of Cl(2) at 355 nm, and the resulting CH(3) and HCl products are detected in a state-specific manner using resonance-enhanced multiphoton ionization (REMPI). By comparing the relative amplitudes of the action spectra of Cl+CH(4)(nu(2)+nu(4)) and Cl+CH(4)(nu(3)) reactions, we determine that the nu(2)+nu(4) mode-driven reaction is at least 15% as reactive as the nu(3) (antisymmetric stretch) mode-driven reaction. The REMPI spectrum of the CH(3) products shows no propensity toward the formation of umbrella bend mode excited methyl radical, CH(3)(nu(2)=1), which is in sharp distinction to the theoretical expectation based on adiabatic correlations between CH(4) and CH(3). The rotational distribution of HCl(v=1) products from the Cl+CH(4)(nu(2)+nu(4)) reaction is hotter than the corresponding distribution from the Cl+CH(4)(nu(3)) reaction, even though the total energies of the two reactions are the same within 4%. An explanation for this enhanced rotational excitation of the HCl product from the Cl+CH(4)(nu(2)+nu(4)) reaction is offered in terms of the projection of the bending motion of the CH(4) reagent onto the rotational motion of the HCl product. The angular distributions of the HCl(nu=0) products from the Cl+CH(4)(nu(2)+nu(4)) reaction are backward scattered, which is in qualitative agreement with theoretical calculation. Overall, nonadiabatic product vibrational correlation and mode specificity of the reaction indicate that either the bending mode or the torsional mode or both modes are strongly coupled to the reaction coordinate.  相似文献   

13.
Reduction of the dication [(eta5-Ind)(Cp)Mo[P(OMe)3]2]2+ (1(2+)) and oxidation of the neutral complex (eta3-Ind)(Cp)Mo[P(OMe)3]2 (1) proceed through a one-electron intermediate, 1+. The structures of 1(2+) and 1 have been determined by X-ray diffraction studies, which show the slip-fold distortion angle, Omega, of the indenyl ring increasing from 4.1 degrees in 1(2+) to 21.7 degrees in 1. Cyclic voltammetry and bulk electrolysis were employed to define the thermodynamics and heterogeneous charge-transfer kinetics of reactions 1(2+) + e(-) <==> 1+ and 1+ + e(-) <==> 1: DeltaE1/2 = 113 mV in CH3CN and 219 mV in CH2Cl2/0.1 M [NBu4][PF6]; k(s) = 0.4 cm x s(-1) for 1(2+)/1+ couple, 1.0 cm x s(-1) for 1+/1 couple in CH3CN. ESR spectra of 1+ displayed a surprisingly large hyperfine splitting (7.4 x 10(-4) x cm(-1)) from a single 1H nucleus, and spectra of the partially deuterated indenyl analogue confirmed assignment of a(H) to the H2 proton of the indenyl ring. The related eta5 18-electron complexes [(eta5-Ind)(Cp)Mo(dppe)]2+ (2(2+)) (dppe = diphenylphosphinoethane) and (eta5-Ind)(Cp)Mo(CN)2 (3) may also be reduced in two successive one-electron steps; ESR spectra of the radicals 2+ and 3- showed a similarly large a(H2) (8.7 x 10(-4) and 6.4 x 10(-4) x cm(-1), respectively). Molecular orbital calculations (density functional theory, DFT, and extended Hückel, EH) predict metal-indenyl bonding in 1+ that is approximately midway between that of the eta5 and eta3 hapticities (e.g., Omega = 11.4 degrees ). DFT results show that the large value of a(H2) arises from polarization of the indenyl-H2 by both inner-sphere orbitals and the singly occupied molecular orbital (SOMO) of 1+. The measured ks values are consistent with only minor inner-sphere reorganizational energies being necessary for the electron-transfer reactions, showing that a full eta5/eta3 hapticity change may require only small inner-sphere reorganization energies when concomitant with a pair of stepwise one-electron-transfer processes. The indenyl ligand in 1+ is best described as donating approximately four pi-electrons to Mo by combining a traditional eta3 linkage with two "half-strength" Mo-C bonds.  相似文献   

14.
Activation barriers (DeltaHMe(double dagger)) for adding methyl radicals to ions of the general formula CH3CR=OCH3+ have been measured by looking at the threshold energies for the reverse reaction, dissociative photoionization of ethers of the general formula RC(CH3)2OCH3. Dissociation by loss of a methyl radical has more favorable thermochemistry than loss of R*, yet the onset of R* loss occurs at lower energies than loss of CH3*. In other words, the more endothermic dissociation exhibits a lower appearance energy. Contrathermodynamic ordering of appearance energies is observed for R = Et, nPr, iPr, tBu, and neopentyl. The sum of the appearance energy difference, DeltaAE, and the thermochemical difference (DeltaDeltaH, calculated using G3 theory) gives a lower bound for the barrier for adding methyl radical to CH3CR=OCH3+. More specifically, the difference between that activation barrier and the one for adding R* to (CH3)2C=OCH3+, DeltaHMe(double dagger)-DeltaHR(double dagger), equals DeltaAE + DeltaDeltaH and has values in the range 20-24 kJ mol(-1) for the homologous series investigated. There is no systematic trend with the steric bulk of R, and available evidence suggests that DeltaHR(double dagger) does not have a value >5 kJ mol(-1). The difference in barrier heights, DeltaHMe(double dagger)-DeltaHiPr(double dagger) for CH3* plus iPrC(CH3)=OX+ vs iPr* + (CH3)2C=OX+, has the same value, regardless of whether X = H or CH3. Mixing of higher energy electronic configurations provides a qualitative theoretical explanation for some (but not all) observed trends in barrier heights.  相似文献   

15.
The spectral properties of protonated water clusters, especially the difference between Eigen (H3O+) and Zundel (H5O2+) conformers and the difference between their unhydrated and dominant hydrated forms are investigated with the first principles molecular dynamics simulations as well as with the high level ab initio calculations. The vibrational modes of the excess proton in H3O+ are sensitive to the hydration, while those in H5O2+ are sensitive to the messenger atom such as Ar (which was assumed to be weakly bound to the water cluster during acquisitions of experimental spectra). The spectral feature around approximately 2700 cm-1 (experimental value: 2665 cm-1) for the Eigen moiety appears when H3O+ is hydrated. This feature corresponds to the hydrating water interacting with H3O+, so it cannot appear in the Eigen core. Thus, H3O+ alone would be somewhat different from the Eigen forms in water. For the Zundel form (in particular, H5O2+), there have been some differences in spectral features among different experiments as well as between experiments and theory. When an Ar messenger atom is introduced at a specific temperature corresponding to the experimental condition, the calculated vibrational spectra for H5O2+.Ar are in good agreement with the experimental infrared spectra showing the characteristic Zundel frequency at approximately 1770 cm-1. Thus, the effect of hydration, messenger atom Ar, and temperature are crucial to elucidating the nature of vibrational spectra of Eigen and Zundel forms and to assigning the vibrational modes of small protonated water clusters.  相似文献   

16.
Dissociative charge exchange of CH5+ with Cs, coupled with quasiclassical trajectory calculations on an ab initio PES for CH5, has been used to probe the structure of the CH5+ cation. Product kinetic energy release distributions and branching ratios for CH5 --> CH4 + H and CH5 --> CH3 + H2 have been compared. The agreement of the product branching ratios provides evidence for the fluxional nature of CH5+.  相似文献   

17.
The internal rotation of the methyl group in toluene and nitromethane and the ring-puckering motion of cyclopentene have been studied by analysing the infrared and Raman spectra of the ν(CH) or ν(CD) stretching vibrations of the CH or CD oscillators isolated in selectively deuterated molecules.The interpretation of the spectra is supported by a general formalism of anharmonic coupling between the high-frequency and low-frequency modes. The latter is described in quantum mechanics in the gas and solid state but takes a stochastic character in the liquid state.  相似文献   

18.
采用密度泛函理论的四种方法:杂化密度泛函B3LYP与B3PW91、Perdew-Wang91交换与相关泛函WP91PW91、局域自旋密度近似SVWN,研究了A15、Al5-和Al5+团簇的多种可能结构,找到了它们稳定的结构与自旋态,与已有的理论结果作了比较,并计算了Al5-的绝热与垂直电子离解能、Al5的绝热与垂直电离势,同有关的实验数据比较,符合较好.同时对四种密度泛函方法的计算结果作了一些比较与讨论.  相似文献   

19.
Fourier transform infrared spectra of the nu(s) band of the (CH2)(2)S-DF complex have been recorded at 0.1-0.5 cm(-1) resolution in a cooled cell and in a supersonic jet expansion seeded with argon. A sufficient density of (CH(2))(2)S-DF heterodimers is produced by a double injection nozzle device, which limits the possibility of reaction between thiirane and DF before the expansion. The observation of partially resolved PQR branch structures at cell temperatures as high as 252 K indicates relatively small effective line widths, which allow a detailed analysis of the underlying vibrational couplings and of the structural properties of the complex. The analysis of cell and free jet spectra in the temperature range 50-250 K is performed with a software package for the simulation and fitting of multiple hot band progressions in asymmetric rotors. The analysis reveals that the three low frequency hydrogen-bond modes are strongly coupled to the DF stretch with anharmonic coupling constants, which indicates a strengthening of the hydrogen bond upon vibrational excitation of DF. Rovibrational parameters and a reliable upper bound for the homogeneous line width have been extracted.  相似文献   

20.
The 77 K emission spectra of a series of [Ru(Am)6-2n(bpy)n]2+ complexes (n = 1-3) have been determined in order to evaluate the effects of appreciable excited state (e)/ground state (g) configurational mixing on the properties of simple electron-transfer systems. The principal focus is on the vibronic contributions, and the correlated distortions of the bipyridine ligand in the emitting MLCT excited state. To address the issues that are involved, the emission band shape at 77 K is interpreted as the sum of a fundamental component, corresponding to the {e,0'} --> {g,0} transition, and progressions in the ground-state vibrational modes that correlate with the excited-state distortion. Literature values of the vibrational parameters determined from the resonance-Raman (rR) for [Ru(NH3)4bpy]2+ and [Ru(bpy)3]2+ are used to model the emission spectra and to evaluate the spectral analysis. The Gaussian fundamental component with an energy Ef and bandwidth Deltanu1/2 is deconvoluted from the observed emission spectrum. The first-, second-, and third-order terms in the progressions of the vibrational modes that contribute to the band shape are evaluated as the sums of Gaussian-shaped contributions of width Deltanu1/2. The fundamental and the rR parameters give an excellent fit of the observed emission spectrum of [Ru(NH3)4bpy]2+, but not as good for the [Ru(bpy)3]2+ emission spectrum probably because the Franck-Condon excited state probed by the rR is different in symmetry from the emitting MLCT excited state. Variations in vibronic contributions for the series of complexes are evaluated in terms of reorganizational energy profiles (emreps, Lambdax) derived from the observed spectra, and modeled using the rR parameters. This modeling demonstrates that most of the intensity of the vibronic envelopes obtained from the frozen solution emission spectra arises from the overlapping of first-order vibronic contributions of significant bandwidth with additional convoluted contributions of higher order vibronic terms. The emrep amplitudes of these complexes have their maxima at about 1500 cm(-1) in frozen solution, and Lambdax(max) decreases systematically by approximately 2-fold as Ef decreases from 17,220 for [Ru(bpy)3]2+ to 12,040 cm(-1) for [Ru(NH3)4bpy]2+ through the series of complexes. Corrections for higher order contributions and bandwidth differences based on the modeling with rR parameters indicate that the variations in Lambdax(max) imply somewhat larger decreases in first-order bpy vibrational reorganizational energies. The large attenuation of vibrational reorganizational energies of the [Ru(Am)6-2n(bpy)n]2+ complexes contrasts with the apparent similarity of reorganizational energy amplitudes for the absorption and emission of [Ru(NH3)4bpy]2+. These observations are consistent with increasing and very substantial excited-state/ground-state configurational mixing and decreasing excited-state distortion as Ef decreases, but more severe attenuation for singlet/singlet than triplet/singlet mixing (alphage > alphaeg for the configurational mixing coefficients at the ground-state and excited-state potential energy minima, respectively); it is inferred that 0.18 > or = alphage2 > or = 0.09 for [Ru(bpy)3]2+ and 0.37 > or = alphage2 > or = 0.18 for [Ru(NH3)4bpy]2+ in DMSO/water glasses, where the ranges are based on models that there is or is not a spin restriction on configurational mixing (alphage > alphaeg and alphage = alphaeg), respectively, for these complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号