首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用密度泛函理论(DFT)的BP86方法对含氮配体咪唑、甲基咪唑、异丙基咪唑和吡啶与5,10,15-三(五氟苯基)咔咯锰[(TPFC)Mn]和5,10,15-三(五氟苯基)咔咯锰氧[(TPFC)MnVO]的轴向配位性质进行理论研究.计算结果表明配体能与五重态下的(TPFC)Mn形成有效的轴向配位作用,结合能绝对值次序为:咪唑>4-甲基咪唑>吡啶,与实验结果一致. 另外,结合能和轴向配位键长数据显示,这些配体不能与基态(单重态)或三重态(TPFC)MnVO中的MnV原子形成有效的轴向配位作用,自然键轨道(NBO)分析表明其MnV没有空的3d 轨道来接受配体的孤对电子,但配体可与三重态下的(TPFC)MnVO形成弱的配位作用.  相似文献   

2.
Manganese(V) imido complexes of 5,10,15-tris(pentafluorophenyl)corrole (H(3)tpfc) can be prepared by the reaction of Mn(III)(tpfc) and organic nitrene generated from either photolytic or thermal activation of organic azides. The terminal imido complexes of manganese(V) were among the first structurally characterized examples of Mn(V) terminal imido complexes in the literature. They feature a short Mn≡N triple bond and a nearly linear M[triple bond, length as m-dash]N-C angle. The ground state of (tpfc)Mn(V)(NAr) is singlet. Contrary to expectations, arylimido complexes of manganese(V) were stable to moisture and did not undergo [NR] group transfer to olefins. Manganese(V) imido corrole with an activated tosyl imido ligand was prepared from iodoimine (ArINTs) and manganese(III) corrole. The resulting complex (tpfc)Mn(NTs) is paramagnetic (S = 1), hydrolyzes to (tpfc)Mn(O) in the presence of water, abstracts hydrogen atoms from benzylic C-H bonds, and catalyzes aziridination of alkenes. Mechanistic studies on the aziridination and hydrogen atom transfer reactions are reviewed. This perspective also describes the reaction chemistry of the heme enzyme chlorite dismutase, the mechanism by which dioxygen is formed on a single-metal site, and recent advances in functional modelling of this enzyme. We also compare the reactivity of water-soluble iron versus manganese porphyrins towards the chlorite anion.  相似文献   

3.
Zdilla MJ  Abu-Omar MM 《Inorganic chemistry》2008,47(22):10718-10722
Hydrogen atom transfer (HAT) reactions from dihydroanthracene to ArINTs (Ar = 2- tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) is catalyzed by Mn(tpfc) (tpfc = 5,10,15-tris(pentafluorophenyl)corrole). Kinetics of HAT was monitored by gas chromatography. Conversion to the major products anthracene, TsNH 2, and ArI is too fast to be explained by direct HAT from the terminal imido complex TsN=Mn(tpfc), which forms from the reaction of Mn(tpfc) with ArINTs. Steady-state kinetics, isotope effects, and variation of the initial catalyst form (Mn (III)(tpfc) vs TsN=Mn (V)(tpfc)) support a mechanism in which the active catalytic species is an adduct of manganese(III) with the oxidant, (ArINTs)Mn (III)(tpfc). This species was detected by rapid-scan stopped-flow absorption spectroscopy. Kinetic simulations demonstrated the viability of this mechanism in contrast to other proposals.  相似文献   

4.
5.
The oxidation reaction of M(tpfc) [M = Mn or Cr and tpfc = tris(pentafluorophenyl)corrole] with aryl azides under photolytic or thermal conditions gives the first examples of mononuclear imido complexes of manganese(V) and chromium(V). These complexes have been characterized by NMR, mass spectrometry, UV-vis, EPR, elemental analysis, and cyclic voltammetry. Two X-ray structures have been obtained for Mn(tpfc)(NMes) and Cr(tpfc)(NMes) [Mes = 2,4,6-(CH(3))(3)C(6)H(2)]. Short metal-imido bonds (1.610 and 1.635 Angstroms) as well as nearly linear M-N-C angles are consistent with triple M triple-bond NR bond formation. The kinetics of nitrene [NR] group transfer from manganese(V) corroles to various organic phosphines have been defined. Reduction of the manganese(V) corrolato complex affords phosphine imine and Mn(III) with reaction rates that are sensitive to steric and electronic elements of the phosphine substrate. An analogous manganese complex with a variant corrole ligand containing bromine atoms in the beta-pyrrole positions, Mn(Br(8)tpfc)(NAr), has been prepared and studied. Its reaction with PEt(3) is 250x faster than that of the parent tpfc complex, and its Mn(V/IV) couple is shifted by 370 mV to a more positive potential. The EPR spectra of chromium(V) imido corroles reveal a rich signal at ambient temperature consistent with Cr(V) triple-bond NR (d(1), S = 1/2) containing a localized spin density in the d(xy) orbital, and an anisotropic signal at liquid nitrogen temperature. Our results demonstrate the synthetic utility of organic aryl azides in the preparation of mononuclear metal imido complexes previously considered elusive, and suggest strong sigma-donation as the underlying factor in stabilizing high-valent metals by corrole ligands.  相似文献   

6.
The reactions of manganese(III) porphyrin complexes with terminal oxidants, such as m-chloroperbenzoic acid, iodosylarenes, and H(2)O(2), produced high-valent manganese(V)-oxo porphyrins in the presence of base in organic solvents at room temperature. The manganese(V)-oxo porphyrins have been characterized with various spectroscopic techniques, including UV-vis, EPR, 1H and 19F NMR, resonance Raman, and X-ray absorption spectroscopy. The combined spectroscopic results indicate that the manganese(V)-oxo porphyrins are diamagnetic low-spin (S = 0) species with a longer, weaker Mn-O bond than in previously reported Mn(V)-oxo complexes of non-porphyrin ligands. This is indicative of double-bond character between the manganese(V) ion and the oxygen atom and may be attributed to the presence of a trans axial ligand. The [(Porp)Mn(V)=O](+) species are stable in the presence of base at room temperature. The stability of the intermediates is dependent on base concentration. In the absence of base, (Porp)Mn(IV)=O is generated instead of the [(Porp)Mn(V)=O](+) species. The stability of the [(Porp)Mn(V)=O](+) species also depends on the electronic nature of the porphyrin ligands: [(Porp)Mn(V)=O](+) complexes bearing electron-deficient porphyrin ligands are more stable than those bearing electron-rich porphyrins. Reactivity studies of manganese(V)-oxo porphyrins revealed that the intermediates are capable of oxygenating PPh(3) and thioanisoles, but not olefins and alkanes at room temperature. These results indicate that the oxidizing power of [(Porp)Mn(V)=O](+) is low in the presence of base. However, when the [(Porp)Mn(V)=O](+) complexes were associated with iodosylbenzene in the presence of olefins and alkanes, high yields of oxygenated products were obtained in the catalytic olefin epoxidation and alkane hydroxylation reactions. Mechanistic aspects, such as oxygen exchange between [(Porp)Mn(V)=16O](+) and H(2)(18)O, are also discussed.  相似文献   

7.
Pseudo-first order reaction rate constants of 5,10,15-tris(pentafluorophenyl)corrole Mn(V)-oxo (F15CMn(V)-oxo),5,15-bis(pentafluorophenyl)-10-(phenyl)corrole Mn(V)-oxo(F10CMn(V)-oxo),5,15- bis(phenyl)-10-(pentafluorophenyl)corrole Mn(V)-oxo(F5CMn(V)-oxo) and 5,10,15-tris(phenyl)corrole Mn(V)-oxo(F0CMn(V)-oxo) with a series of alkene substrates in different solvents were determined by UV-vis spectroscopy.The results indicated that the oxygen atom transfer pathway between Mn(V)-oxo corrole and alkene is solvent-dependent.  相似文献   

8.
Olefin epoxidations are a class of reactions appropriate for the investigation of oxygenation processes in general. Here, we report the catalytic epoxidation of various olefins with a novel, cross-bridged cyclam manganese complex, Mn(Me2EBC)Cl2 (Me2EBC is 4,11-dimethyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane), using hydrogen peroxide as the terminal oxidant, in acetone/water (ratio 4:1) as the solvent medium. Catalytic epoxidation studies with this system have disclosed reactions that proceed by a nonradical pathway other than the expected oxygen-rebound mechanism that is characteristic of high-valent, late-transition-metal catalysts. Direct treatment of olefins with freshly synthesized [Mn(IV)(Me2EBC)(OH)2](PF6)2 (pKa = 6.86) in either neutral or basic solution confirms earlier observations that neither the oxo-Mn(IV) nor oxo-Mn(V) species is responsible for olefin epoxidization in this case. Catalytic epoxidation experiments using the 18O labels in an acetone/water (H2(18)O) solvent demonstrate that no 18O from water (H2(18)O) is incorporated into epoxide products even though oxygen exchange was observed between the Mn(IV) species and H2(18)O, which leads to the conclusion that oxygen transfer does not proceed by the well-known oxygen-rebound mechanism. Experiments using labeled dioxygen, (18)O2, and hydrogen peroxide, H2(18)O2, confirm that an oxygen atom is transferred directly from the H2(18)O2 oxidant to the olefin substrate in the predominant pathway. The hydrogen peroxide adduct of this high-oxidation-state manganese complex, Mn(IV)(Me2EBC)(O)(OOH)+, was detected by mass spectra in aqueous solutions prepared from Mn(II)(Me2EBC)Cl2 and excess hydrogen peroxide. A Lewis acid pathway, in which oxygen is transferred to the olefin from that adduct, Mn(IV)(Me2EBC)(O)(OOH)+, is proposed for epoxidation reactions mediated by this novel, non-heme manganese complex. A minor radical pathway is also apparent in these systems.  相似文献   

9.
Porphyrin-manganese(V)-oxo and porphyrin-manganese(IV)-oxo species were produced in organic solvents by laser flash photolysis (LFP) of the corresponding porphyrin-manganese(III) perchlorate and chlorate complexes, respectively, permitting direct kinetic studies. The porphyrin systems studied were 5,10,15,20-tetraphenylporphyrin (TPP), 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (TPFPP), and 5,10,15,20-tetrakis(4-methylpyridinium)porphyrin (TMPyP). The order of reactivity for (porphyrin)Mn(V)(O) derivatives in self-decay reactions in acetonitrile and in oxidations of substrates was (TPFPP) > (TMPyP) > (TPP). Representative rate constants for reaction of (TPFPP)Mn(V)(O) in acetonitrile are k = 6.1 x 10(5) M(-1) s(-1) for cis-stilbene and k = 1.4 x 10(5) M(-1) s(-1) for diphenylmethane, and the kinetic isotope effect in oxidation of ethylbenzene and ethylbenzene-d(10) is k(H)/k(D) = 2.3. Competitive oxidation reactions conducted under catalytic conditions display approximately the same relative rate constants as were found in the LFP studies of (porphyrin)Mn(V)(O) derivatives. The apparent rate constants for reactions of (porphyrin)Mn(IV)(O) species show inverted reactivity order with (TPFPP) < (TMPyP) < (TPP) in reactions with cis-stilbene, triphenylamine, and triphenylphosphine. The inverted reactivity results because (porphyrin)Mn(IV)(O) disproportionates to (porphyrin)Mn(III)X and (porphyrin)Mn(V)(O), which is the primary oxidant, and the equilibrium constants for disproportionation of (porphyrin)Mn(IV)(O) are in the order (TPFPP) < (TMPyP) < (TPP). The fast comproportionation reaction of (TPFPP)Mn(V)(O) with (TPFPP)Mn(III)Cl to give (TPFPP)Mn(IV)(O) (k = 5 x 10(8) M(-1) s(-1)) and disproportionation reaction of (TPP)Mn(IV)(O) to give (TPP)Mn(V)(O) and (TPP)Mn(III)X (k approximately 2.5 x 10(9) M(-1) s(-1)) were observed. The relative populations of (porphyrin)Mn(V)(O) and (porphyrin)Mn(IV)(O) were determined from the ratios of observed rate constants for self-decay reactions in acetonitrile and oxidation reactions of cis-stilbene by the two oxo derivatives, and apparent disproportionation equilibrium constants for the three systems in acetonitrile were estimated. A model for oxidations under catalytic conditions is presented.  相似文献   

10.
A novel perfluorinated corrole, 2,3,7,8,12,13,17,18-octafluoro-5,10,15-tris(pentafluorophenyl)corrole, and its manganese(III) and oxomanganese(V) derivatives have been synthesized. The perfluorinated manganese corrolate exhibited excellent reactivity and stability in the catalytic oxidation of alkenes with iodosylbenzene.  相似文献   

11.
Laser flash photolysis of 5,10,15-tris(pentafluorophenyl)corrole-iron(IV) chlorate or nitrate, prepared from the corresponding chloride, gave a highly reactive iron-oxo transient identified as an iron(V)-oxo species on the basis of its UV-visible spectrum and high reactivity as well as by analogy to photochemical ligand cleavage reactions of related manganese species. The transient was shown to be an oxo transfer agent in a preparative reaction with cis-cyclooctene. Representative rate constants for oxidation reactions by the new transient at ambient temperature were k = 5900 M-1 s-1 for cyclooctene and k = 570 M-1 s-1 for ethylbenzene. The new transient is more than 6 orders of magnitude more reactive with typical organic reductants than expected for an iron(IV)-oxo corrole radical cation and 100 times more reactive than an analogous positively charged iron(IV)-oxo porphyrin radical cation. Slow electron transfer isomerization of ligand iron(V)-oxo species to iron(IV)-oxo ligand radical cations might be important in reactions of porphyrin-iron catalysts in the laboratory and in nature.  相似文献   

12.
对5,10,15-三(五氟苯基)-Corrole(tpfc)Mn(V)≡O配合物的稳定性进行了研究. 以二氯甲烷溶剂为参考,乙醇、正辛醇、乙醚、四氢呋喃、二甲基亚砜、甲苯能加速(tpfc)MnV≡O的衰减,而N’N二甲基甲酰胺、水、乙酸乙酯、丙酮能减缓(tpfc)MnV≡O的衰减. (tpfc)MnV≡O与盐酸、醋酸反应生成(tpfc)MnIV-Cl、(tpfc)MnIV-O2CCH3. (tpfc)MnIII能与咪唑、四甲基咪唑、吡啶形成1:1的配合物,轴向配位常数按Imidazole >4-Methylimidazole >Py顺次减弱,在这些轴向配体存在时,(tpfc)MnV≡O的稳定性显著降低. 轴向配体与(tpfc)MnIII的结合导致其MnIII/MnIV半波电位降低. XPS实验结果显示(tpfc)MnIII与轴向配体结合后,其中心金属锰的结合能Mn2p3/2减少,减少程度与轴向配体的给电子能力有关.  相似文献   

13.
Hydrogen atom transfer (HAT) reactions of (tpfc)MnNTs have been investigated (tpfc = 5,10,15-tris(pentafluorophenyl)corrole and Ts = p-toluenesulfonate). 9,10-Dihydroanthracene and 1,4-dihydrobenzene reduce (tpfc)MnNTs via HAT with second-order rate constants 0.16 +/- 0.03 and 0.17 +/- 0.01 M(-1) s(-1), respectively, at 22 degrees C. The products are the respective arenes, TsNH(2) and (tpfc)Mn(III). Conversion of (tpfc)MnNTs to (tpfc)Mn by reaction with dihydroanthracene exhibits isosbestic behavior, and formation of 9,9',10,10'-tetrahydrobianthracene is not observed, suggesting that the intermediate anthracene radical rebounds in a second fast step without accumulation of a Mn(IV) intermediate. The imido complex (tpfc)Mn(V)NTs abstracts a hydrogen atom from phenols as well. For example, 2,6-di-tert-butyl phenol is oxidized to the corresponding phenoxyl radical with a second-order rate constant of 0.32 +/- 0.02 M(-1) s(-1) at 22 degrees C. The other products from imido manganese(V) are TsNH(2) and the trivalent manganese corrole. Unlike reaction with dihydroarenes, when phenols are used isosbestic behavior is not observed, and formation of (tpfc)Mn(IV)(NHTs) is confirmed by EPR spectroscopy. A Hammett plot for various p-substituted 2,6-di-tert-butyl phenols yields a V-shaped dependence on sigma, with electron-donating substituents exhibiting the expected negative rho while electron-withdrawing substituents fall above the linear fit (i.e., positive rho). Similarly, a bond dissociation enthalpy (BDE) correlation places electron-withdrawing substituents above the well-defined negative slope found for the electron-donating substituents. Thus two mechanisms are established for HAT reactions in this system, namely, concerted proton-electron transfer and proton-gated electron transfer in which proton transfer is followed by electron transfer.  相似文献   

14.
The interaction of a water-soluble sulfonated Mn(III) corrole Mn(tpfc)(SO3Na)2 [tpfc = 5,10,15-tris(pentafluorophenyl)corrole] with calf thymus DNA (ct-DNA) has been studied by spectroscopic methods, and the nuclease activity of this complex has also been examined by agarose gel electrophoresis. Mn(tpfc)(SO3Na)2 exhibits weak aggregation tendency in buffer solution and can bind to ct-DNA via an outside binding mode with a binding constant of 1.25 × 104 M?1. The observed increase in Stern–Volmer quenching constant with increasing temperature indicates that the competition of the manganese corrole and ethidium bromide with ct-DNA is a dynamic process. Moreover, the manganese corrole displays good chemical nuclease activity in the presence of hydrogen peroxide via oxidative cleavage of DNA.  相似文献   

15.
锰(III)5,10,15-三(五氟苯基)-Corrole配合物的DFT计算   总被引:1,自引:1,他引:0  
在6-31G*水平上采用DFT(UB3LYP)方法对锰(III)5,10,15-三(五氟苯基)-corrole [(TPFC)MnIII]及其咪唑轴向配位加合物(TPFC)MnIII(Im)进行了几何结构全优化. 计算结果表明, 咪唑的配位作用不会改变其基态的高自旋(s=2)特性. (TPFC)MnIII与咪唑配位形成轴向加合物后, 其中心金属Mn原子偏离平面结构, 与corrole大环N4平均平面的距离达到0.02734 nm. NBO分析显示(TPFC)MnIII和(TPFC)MnIII(Im)中心金属锰的电子组态为(dxz)1(dyz)1(dz2)1(dx2-y2)1(dxy)0. (TPFC)MnIII(Im)前线分子轨道能级明显上升, 从其β-(LUMO+3)轨道可见咪唑配位N原子的py轨道与中心金属Mn原子dyz轨道形成了d-pπ轨道. TD-DFT计算发现, (TPFC)MnIII和(TPFC)MnIII(Im)电子光谱Q带的“四轨”特征比B 带明显; (TPFC)MnIII的CT带主要源自β-(HOMO-1)→β-(LUMO+5)和β-HOMO→β-(LUMO+4)的跃迁, (TPFC)MnIII(Im)的CT带则主要源自β-(HOMO-1)→β-(LUMO+3)和β-HOMO→β-(LUMO+4)的跃迁.  相似文献   

16.
The reaction of Arl=NTs (Ar = 2-(tert-butylsulfonyl)benzene and Ts = p-toluenesulfonyl) and (tpfc)Mn (tpfc=5,10,15-tris(pentafluorophenyl)corrole), 1, affords the high-valent (tpfc)MnV=NTs, 2, on stopped-flow time scale. The reaction proceeds via the adduct [(tpfc)MnIII(ArINTs)], 3, with formation constant K3 = (10 +/- 2) x 10(3) L mol-1. Subsequently, 3 undergoes unimolecular group transfer to give complex 2 with the rate constant k4 = 0.26 +/- 0.07 s-1 at 24.0 degrees C. The complex (tpfc)Mn catalyzes [NTs] group transfer from ArINTs to styrene substrates with low catalyst loading and without requirement of excess olefin. The catalytic aziridination reaction is most efficient in benzene because solvents such as toluene undergo a competing hydrogen atom transfer (HAT) reaction resulting in H2NTs and lowered aziridine yields. The high-valent manganese imido complex (tpfc)Mn=NTs does not transfer its [NTs] group to styrene. Double-labeling experiments with ArINTs and ArINTstBu (TstBu = (p-tert-butylphenyl)sulfonyl) establish the source of [NR] transfer as a "third oxidant", which is an adduct of Mn(V) imido, [(tpfc)Mn(NTstBu)(ArINTs)](4). Formation of this oxidant is rate limiting in catalysis.  相似文献   

17.
A single‐chain magnet (SCM) was constructed from manganese(III) 5,10,15‐tris(pentafluorophenyl)corrole complex [MnIII(tpfc)] through supramolecular π–π stacking without bridging ligands. In the crystal structures, [Mn(tpfc)] molecules crystallized from different solvents, such as methanol, ethyl acetate, and ethanol, exhibit different molecular orientations and intermolecular π–π interaction or weak Mn ??? O interaction to form a supramolecular one‐dimensional motif or dimer. These three complexes show very different magnetic behaviors at low temperature. Methanol solvate 1 shows obvious frequency dependence of out‐of‐phase alternating‐current magnetic susceptibility below 2 K and a magnetization hysteresis loop with a coercive field of 400 Oe at 0.5 K. It is the first example of spin‐canted supramolecular single‐chain magnet due to weak π–π stacking interaction. By fitting the susceptibility data χMT (20–300 K) of 1 with the spin Hamiltonian expression ${\overrightarrow{H}}A single-chain magnet (SCM) was constructed from manganese(III) 5,10,15-tris(pentafluorophenyl)corrole complex [Mn(III) (tpfc)] through supramolecular π-π stacking without bridging ligands. In the crystal structures, [Mn(tpfc)] molecules crystallized from different solvents, such as methanol, ethyl acetate, and ethanol, exhibit different molecular orientations and intermolecular π-π interaction or weak Mn???O interaction to form a supramolecular one-dimensional motif or dimer. These three complexes show very different magnetic behaviors at low temperature. Methanol solvate 1 shows obvious frequency dependence of out-of-phase alternating-current magnetic susceptibility below 2?K and a magnetization hysteresis loop with a coercive field of 400?Oe at 0.5?K. It is the first example of spin-canted supramolecular single-chain magnet due to weak π-π stacking interaction. By fitting the susceptibility data χ(M) T (20-300?K) of 1 with the spin Hamiltonian expression H = -2J Σ(i=1)(n-1) S(Ai) S(Ai+1) + D Σ(i) S((iZ)(2)), the intrachain magnetic coupling parameter transmitted by π-π interaction of -0.31?cm(-1) and zero field splitting parameter D of -2.59?cm(-1) are obtained. Ethyl acetate solvate 2 behaves as an antiferromagnetic chain without ordering or slow magnetic relaxation down to 0.5?K. The magnetic susceptibility data χ(M) T (20-300?K) of 2 was fitted by assuming the spin Hamiltonian H = -2JΣ(i=1)(n-1) S(Ai) S(Ai+1), and the intrachain antiferromagnetic coupling constant of -0.07?cm(-1) is much weaker than that of 1. Ethanol solvate 3 with a dimer motif shows field-induced single-molecule magnet like behavior below 2.5?K. The exchange coupling constant J within the dimer propagated by π-π interaction is -0.14?cm(-1) by fitting the susceptibility data χ(M) T (20-300?K) with the spin Hamiltonian H = -2J S(A) S(B) + β(S((A)g(A)) + S((B)g(B)))H. The present studies open a new way to construct SCMs from anisotropic magnetic single-ion units through weak intermolecular interactions in the absence of bridging ligands.  相似文献   

18.
Manganese(V)-oxo corrole and corrolazine have been studied with ab initio multiconfiguration reference methods (CASPT2 and RASPT2) and large atomic natural orbital (ANO) basis sets. The calculations confirm the expected singlet d(δ)(2) ground states for both complexes and rule out excited states within 0.5 eV of the ground states. The lowest excited states are a pair of Mn(V) triplet states with d(δ)(1)d(π)(1) configurations 0.5-0.75 eV above the ground state. Manganese(IV)-oxo macrocycle radical states are much higher in energy, ≥1.0 eV relative to the ground state. The macrocyclic ligands in the ground states of the complexes are thus unambiguously 'innocent'. The approximate similarity of the spin state energetics of the corrole and corrolazine complexes suggests that the latter macrocycle on its own does not afford any special stabilization for the Mn(V)O center. The remarkable stability of an Mn(V)O octaarylcorrolazine thus appears to be ascribable to the steric protection afforded by the β-aryl groups.  相似文献   

19.
Co(III) corroles were investigated as efficient catalysts for the reduction of dioxygen in the presence of perchloric acid in both heterogeneous and homogeneous systems. The investigated compounds are (5,10,15-tris(pentafluorophenyl)corrole)cobalt (TPFCor)Co, (10-pentafluorophenyl-5,15-dimesitylcorrole)cobalt (F 5PhMes 2Cor)Co, and (5,10,15-trismesitylcorrole)cobalt (Mes 3Cor)Co, all of which contain bulky substituents at the three meso positions of the corrole macrocycle. Cyclic voltammetry and rotating ring-disk electrode voltammetry were used to examine the catalytic activity of the compounds when adsorbed on the surface of a graphite electrode in the presence of 1.0 M perchloric acid, and this data is compared to results for the homogeneous catalytic reduction of O 2 in benzonitrile containing 10 (-2) M HClO 4. The corroles were also investigated as to their redox properties in nonaqueous media. A reversible one-electron oxidation occurs at E 1/2 values between 0.42 and 0.89 V versus SCE depending upon the solvent and number of fluorine substituents on the compounds, and this is followed by a second reversible one-electron abstraction at E 1/2 = 0.86 to 1.18 V in CH 2Cl 2, THF, or PhCN. Two reductions of each corrole are also observed in the three solvents. A linear relationship is observed between E 1/2 for oxidation or reduction and the number of electron-withdrawing fluorine groups on the compounds, and the magnitude of the substituent effect is compared to what is observed in the case of tetraphenylporphyrins containing meso -substituted C 6F 5 substituents. The electrochemically generated forms of the corrole can exist with Co(I), Co(II), or Co(IV) central metal ions, and the site of the electron-transfer in each oxidation or reduction of the initial Co(III) complex was examined by UV-vis spectroelectrochemistry. ESR characterization was also used to characterize singly oxidized (F 5PhMes 2Cor)Co, which is unambiguously assigned as a Co(III) radical cation rather than the expected Co(IV) corrole with an unoxidized macrocyclic ring.  相似文献   

20.
The syntheses and structural, spectral, and electrochemical characterization of the dioxo-bridged dinuclear Mn(III) complexes [LMn(mo-O)(2)MnL](ClO(4))(2), of the tripodal ligands tris(6-methyl-2-pyridylmethyl)amine (L(1)) and bis(6-methyl-2-pyridylmethyl)(2-(2-pyridyl)ethyl)amine (L(2)), and the Mn(II) complex of bis(2-(2-pyridyl)ethyl)(6-methyl-2-pyridylmethyl)amine (L(3)) are described. Addition of aqueous H(2)O(2) to methanol solutions of the Mn(II) complexes of L(1) and L(2) produced green solutions in a fast reaction from which subsequently precipitated brown solids of the dioxo-bridged dinuclear complexes 1 and 2, respectively, which have the general formula [LMn(III)(mu-O)(2)Mn(III)L](ClO(4))(2). Addition of 30% aqueous H(2)O(2) to the methanol solution of the Mn(II) complex of L(3) ([Mn(II)L(3)(CH(3)CN)(H(2)O)](ClO(4))(2) (3)) showed a very sluggish change gradually precipitating an insoluble black gummy solid, but no dioxo-bridged manganese complex is produced. By contrast, the Mn(II) complex of the ligand bis(2-(2-pyridyl)ethyl)(2-pyridylmethyl)amine (L(3a)) has been reported to react with aqueous H(2)O(2) to form the dioxo-bridged Mn(III)Mn(IV) complex. In cyclic voltammetric experiments in acetonitrile solution, complex 1 shows two reversible peaks at E(1/2) = 0.87 and 1.70 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and the Mn(III)Mn(IV) <--> Mn(IV)(2) processes, respectively. Complex 2 also shows two reversible peaks, one at E(1/2) = 0.78 V and a second peak at E(1/2) = 1.58 V (vs Ag/AgCl) assigned to the Mn(III)(2) <--> Mn(III)Mn(IV) and Mn(III)Mn(IV) <--> Mn(IV)(2) redox processes, respectively. These potentials are the highest so far observed for the dioxo-bridged dinuclear manganese complexes of the type of tripodal ligands used here. The bulk electrolytic oxidation of complexes 1 and 2, at a controlled anodic potential of 1.98 V (vs Ag/AgCl), produced the green Mn(IV)(2) complexes that have been spectrally characterized. The Mn(II) complex of L(3) shows a quasi reversible peak at an anodic potential of E(p,a) of 1.96 V (vs Ag/AgCl) assigned to the oxidation Mn(II) to Mn(III) complex. It is about 0.17 V higher than the E(p,a) of the Mn(II) complex of L(3a). The higher oxidation potential is attributable to the steric effect of the methyl substituent at the 6-position of the pyridyl donor of L(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号