首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The relaxation behavior of poly(5-acryloxymethyl-5-methyl-1,3-dioxacyclohexane), a polymer containing highly flexible side groups, is studied by broadband dielectric spectroscopy in the frequency and temperature ranges 10(-1)-10(9) Hz and 123-473 K, respectively. Above the glass transition temperature T(g) the dielectric loss in the frequency domain exhibits a prominent alpha absorption, followed in increasing order of frequencies by two secondary absorptions called beta and gamma. At temperatures slightly higher than T(g), the a relaxation is well separated from the beta, but as temperature increases overlapping between both relaxations augments forming an alphabeta absorption in the vicinity of 420 K. This latter absorption displays a shoulder on its high-frequency side corresponding to the y relaxation. The strength of the a relaxation decreases with increasing temperature, eventually vanishing at the temperature at which the alphabeta absorption is formed. The time retardation spectra of the isotherms are calculated and further used to facilitate the deconvolution of the overlapping relaxations. The fact that the temperature dependence of the beta relaxation also describes that of the alphabeta absorption suggests that both relaxations have the same nature. It seems that as temperature increases, the a relaxation feeds on the beta absorption until its complete disappearance. The gamma relaxation, in turn, seems to increase at the expense of the alphabeta process at high temperature.  相似文献   

2.
The relaxation behavior of poly(2,3-dichlorobenzyl methacrylate) is studied by broadband dielectric spectroscopy in the frequency range of 10(-1)-10(9) Hz and temperature interval of 303-423 K. The isotherms representing the dielectric loss of the glassy polymer in the frequency domain present a single absorption, called beta process. At temperatures close to Tg, the dynamical alpha relaxation already overlaps with the beta process, the degree of overlapping increasing with temperature. The deconvolution of the alpha and beta relaxations is facilitated using the retardation spectra calculated from the isotherms utilizing linear programming regularization parameter techniques. The temperature dependence of the beta relaxation presents a crossover associated with a change in activation energy of the local processes. The distance between the alpha and beta peaks, expressed as log(fmax;beta/fmax;alpha) where fmax is the frequency at the peak maximum, follows Arrhenius behavior in the temperature range of 310-384 K. Above 384 K, the distance between the peaks remains nearly constant and, as a result, the a onset temperature exhibited for many polymers is not reached in this system. The fraction of relaxation carried out through the alpha process, without beta assistance, is larger than 60% in the temperature range of 310-384 K where the so-called Williams ansatz holds.  相似文献   

3.
Broadband dielectric spectroscopy was used to study the relaxation dynamics in bis-5-hydroxypentylphthalate (BHPP) under both isobaric and isothermal conditions. The relaxation dynamics exhibit complex behavior, arising from hydrogen bonding in the BHPP. At ambient pressure above the glass transition temperature T(g), the dielectric spectrum shows a broad structural relaxation peak with a prominent excess wing toward higher frequencies. As temperature is decreased below T(g), the excess wing transforms into two distinct peaks, both having Arrhenius behavior with activation energies equal to 58.8 and 32.6 kJmol for slower (beta) and faster (gamma) processes, respectively. Furthermore, the relaxation times for the beta process increase with increasing pressure, whereas the faster gamma relaxation is practically insensitive to pressure changes. Analysis of the properties of these secondary relaxations suggests that the beta peak can be identified as an intermolecular Johari-Goldstein (JG) process. However, its separation in frequency from the alpha relaxation, and both its activation energy and activation volume, differ substantially from values calculated from the breadth of the structural relaxation peak. Thus, the dynamics of BHPP appear to be an exception to the usual correlation between the respective properties of the structural and the JG secondary relaxations.  相似文献   

4.
The non-Debye relaxation behavior of hyperbranched polyglycerol was investigated by broadband dielectric spectroscopy. A thorough study of the relaxations was carried out paying special attention to truncation effects on deconvolutions of overlapping processes. Hyperbranched polyglycerol exhibits two relaxations in the glassy state named in increasing order of frequency beta and gamma processes. The study of the evolution of these two fast processes with temperature in the time retardation spectra shows that the beta absorption is swallowed by the alpha in the glass-liquid transition, the gamma absorption being the only relaxation that remains operative in the liquid state. In heating, a temperature is reached at which the alpha absorption vanishes appearing the alphagamma relaxation. Two characteristics of alpha absorptions, decrease of the dielectric strength with increasing temperature and rather high activation energy, are displayed by the alphagamma process. Williams' ansatz seems to hold for these topologically complex macromolecules.  相似文献   

5.
Dielectric loss spectra of two glass-forming isomers, eugenol and isoeugenol, measured at ambient and elevated pressures in the normal liquid, supercooled, and glassy states are presented. The isomeric chemical compounds studied differ only by the location of the double bond in the alkyl chain. Above the glass transition temperature T(g), the dielectric loss spectra of both isomers exhibit an excess wing on the high frequency flank of the loss peak of the alpha relaxation and an additional faster gamma process at the megahertz frequency range. By decreasing temperature below T(g) at ambient pressure or by elevating pressure above P(g), the glass transition pressure, at constant temperature, the excess wing of isoeugenol shifts to lower frequencies and is transformed into a secondary beta-loss peak, while in eugenol it becomes a shoulder. These spectral features enable the beta-relaxation time tau(beta) to be determined in the glassy state. These changes indicate that the excess wings in isoeugenol and eugenol are similar and both are secondary beta relaxations that are not resolved in the liquid state. While in both isoeugenol and eugenol the loss peak of the beta relaxation in the glassy state and the corresponding excess wing in the liquid state shifts to lower frequencies on elevating pressure, the locations of their gamma relaxation show little change with increasing pressure. The different pressure sensitivities of the excess wing and gamma relaxation are further demonstrated by the nearly perfect superposition of the alpha-loss peak together with excess wing from the data taken at ambient pressure and at elevated pressure (and higher temperature so as to have the same alpha-peak frequency), but not the gamma-loss peak in both isoeugenol and eugenol. On physical aging isoeugenol, the beta-loss peak shifts to lower frequencies, but not the gamma relaxation. Basing on these experimental facts, the faster gamma relaxation is a local intramolecular process involving a side group and the slower beta relaxation mimics the structural alpha relaxation in behavior, involves the entire molecule and satisfies the criteria for being the Johari-Goldstein beta relaxation. Analysis and interpretation of the spectra utilizing the coupling model further demonstrate that the excess wings seen in the equilibrium liquid states of these two isomers are their genuine Johari-Goldstein beta relaxation.  相似文献   

6.
The dielectric permittivity ε′ and loss ε″ of anhydrous poly(2-hydroxyethyl methacrylate) and its 38.6 w/w% hydrogel have been measured in the frequency range from 12 Hz to 200 kHz and the temperature range from 77 to 273 K. The former has a sub-Tg relaxation with a half-width of 4.5 decades for the loss spectra, whose strength increases with temperature, and an activation energy of 62.5 kJ/mol. The dielectric relaxation time of the α process of supercooled water in the hydrogel is 53 s at its calorimetric Tg of 135 K. The half-width of the relaxation spectrum is 2.85 decades and, in the narrow temperature range, its apparent activation energy is 60.8 kJ/mol. Heating of the hydrogel causes crystallization of water which begins at about 207 K and becomes readily detectable as a second dielectric loss peak at about 230 K. For each temperature between 207 and 267 K, supercooled water in the hydrogel coexists with its crystallized form, with the amount of the crystallized solid increasing with increasing temperature. These results are discussed in terms of “bound” and “free” states of water in the hydrogel.  相似文献   

7.
Using picosecond time-domain reflectometry (TDR), dielectric relaxation studies have been carried out on binary mixtures of n-butyl acetate with methanol, ethanol, and 1-propanol, over the frequency range from 10 MHz to 20 GHz, at various concentrations and temperatures. The excess permittivity, excess inverse relaxation time, Kirkwood correlation factor, and thermodynamic parameters have been obtained. The excess permittivity for all the systems is negative. The values of static permittivity and relaxation time decrease with an increase in the percentage of n-butyl acetate in the mixtures.  相似文献   

8.
Broad-band dielectric measurements for fructose-water mixtures with fructose concentrations between 70.0 and 94.6 wt% were carried out in the frequency range of 2 mHz to 20 GHz in the temperature range of -70 to 45 degrees C. Two relaxation processes, the alpha process at lower frequency and the secondary beta process at higher frequency, were observed. The dielectric relaxation time of the alpha process was 100 s at the glass transition temperature, T(g), determined by differential scanning calorimetry (DSC). The relaxation time and strength of the beta process changed from weaker temperature dependences of below T(g) to a stronger one above T(g). These changes in behaviors of the beta process in fructose-water mixtures upon crossing the T(g) of the mixtures is the same as that found for the secondary process of water in various other aqueous mixtures with hydrogen-bonding molecular liquids, polymers, and nanoporous systems. These results lead to the conclusion that the primary alpha process of fructose-water mixtures results from the cooperative motion of water and fructose molecules, and the secondary beta process is the Johari-Goldstein process of water in the mixture. At temperatures near and above T(g) where both the alpha and the beta processes were observed and their relaxation times, tau(alpha) and tau(beta), were determined in some mixtures, the ratio tau(alpha)/tau(beta) is in accord with that predicted by the coupling model. Fixing tau(alpha) at 100 s, the ratio tau(alpha)/tau(beta) decreases with decreasing concentration of fructose in the mixtures. This trend is also consistent with that expected by the coupling model from the decrease of the intermolecular coupling parameter upon decreasing fructose concentration.  相似文献   

9.
The dielectric permittivity and loss of poly(vinyl methyl ether) (mol. wt. 30,000) have been measured from 12 Hz to 100 kHz at temperatures from 77 K to 320 K. Two relaxation processes, γ and β, are observed at T < Tg (245 K), and one above Tg. The Arrhenius plots of the γ and β processes have activation energies of 20 and 41 kJ mole?1 respectively. The relaxation rate of the α process is described by the Vogel-Fulcher-Tamman equation or the William-Landel-Ferry equation. The relaxation rates of γ and β processes evaluated from the isochrones differ from those evaluated from the isothermal spectrum. The features of chain motions observed are similar to those in other polymer and rigid molecular glasses.  相似文献   

10.
We present shear mechanical and dielectric measurements taken on seven liquids: triphenylethylene, tetramethyltetra-phenyltrisiloxane (Dow Corning 704 diffusion pump fluid), polyphenyl ether (Santovac 5 vacuum pump fluid), perhydrosqualene, polybutadiene, decahydroisoquinoline (DHIQ), and tripropylene glycol. The shear mechanical and dielectric measurements are for each liquid performed under identical thermal conditions close to the glass transition temperature. The liquids span four orders of magnitude in dielectric relaxation strength and include liquids with and without Johari-Goldstein beta relaxation. The shear mechanical data are obtained by the piezoelectric shear modulus gauge method giving a large frequency span (10(-3)-10(4.5) Hz). This allows us to resolve the shear mechanical Johari-Goldstein beta peak in the equilibrium DHIQ liquid. We moreover report a signature (a pronounced rise in the shear mechanical loss at frequencies above the alpha relaxation) of a Johari-Goldstein beta relaxation in the shear mechanical spectra for all the liquids which show a beta relaxation in the dielectric spectrum. It is found that both the alpha and beta loss peaks are shifted to higher frequencies in the shear mechanical spectrum compared to the dielectric spectrum. It is in both the shear and dielectric responses found that liquids obeying time-temperature superposition also have a high-frequency power law with exponent close to -12. It is moreover seen that the less temperature dependent the spectral shape is, the closer it is to the universal -12 power-law behavior. The deviation from this universal power-law behavior and the temperature dependencies of the spectral shape are rationalized as coming from interactions between the alpha and beta relaxations.  相似文献   

11.
The interest in studying the electrical properties of WO(3) x H(2)O powders is made absolutely necessary because their infrared modulation properties depend on their morphologies and electronic populations. Broadband dielectric and resistivity spectra of WO(3) x H(2)O powders were recorded in a frequency range of 10(3)-10(10) Hz at temperatures varying between 200 and 300 K. Complex resistivity and permittivity diagrams have permitted thermal behavior of both dc-conductivity and permittivity to be obtained. A dielectric relaxation is found, attributed to water molecules motions. The role of the powder morphology has been investigated on two types of compounds: the first one being constituted by nanometric particles and the second by micrometric particles. Strong differences are observed in the thermal behaviors of the dc-conductivities (activation energies). Particle size effect is evidenced, giving rise to stronger electron localization on the nanometric particles. The permittivity values and the dynamical behavior of the structural water are also influenced by the particle size effect. A strong interaction between moving polarons and water molecules has been determined.  相似文献   

12.
By the use of time domain reflectometry method, dielectric measurements were carried out on dimethylformamide‐2‐nitrotoluene solvent mixtures in the frequency range 10 MHz‐20 GHz, at various temperatures from 15 °C to 45 °C. These solvent mixtures as well as pure solvents display a Debye type dispersion. Their frequency dependent dielectric properties can be summarized by the three parameters in the Debye equation: a static permittivity, permittivity at high frequency and a dielectric relaxation time constant. The free energy of activation for dipolar relaxation process and the Kirkwood correlation factor were determined using these fitting parameters for these solvent mixtures at various concentrations and temperatures. By using these dielectric parameters, the excess permittivity and excess inverse relaxation time is obtained. The excess permittivity is found to be positive for all concentrations and temperatures whereas the excess inverse relaxation time is negative.  相似文献   

13.
The complete basis set method CBS-QB3 has been used to study the thermochemistry and kinetics of the esters ethyl propanoate (EP) and methyl butanoate (MB) to evaluate initiation reactions and intermediate products from unimolecular decomposition reactions. Using isodesmic and isogeitonic equations and atomization energies, we have estimated chemically accurate enthalpies of formation and bond dissociation energies for the esters and species derived from them. In addition it is shown that controversial literature values may be resolved by adopting, for the acetate radical, CH3C(O)O(.-), DeltaH(o)(f)298.15K) = -197.8 kJ mol(-1) and for the trans-hydrocarboxyl radical, C(.-)(O)OH, -181.6 +/- 2.9 kJ mol(-1). For EP, the lowest energy decomposition path encounters an energy barrier of approximately 210 kJ mol(-1) (approximately 50 kcal mol(-1)), which proceeds through a six-membered ring transition state (retro-ene reaction) via transfer of the primary methyl H atom from the ethyl group to the carbonyl oxygen, while cleaving the carbon-ether oxygen to form ethene and propanoic acid. On the other hand, the lowest energy path for MB has a barrier of approximately 285 kJ mol(-1), producing ethene. Other routes leading to the formation of aldehydes, alcohols, ketene, and propene are also discussed. Most of these intramolecular hydrogen transfers have energy barriers lower than that needed for homolytic bond fission (the lowest of which is 353 kJ mol(-1) for the C(alpha)-C(beta) bond in MB). Propene formation is a much higher energy demanding process, 402 kJ mol(-1), and it should be competitive with some C-C, C-O, and C-H bond cleavage processes.  相似文献   

14.
Measurements of the complex relative permittivity of poly(vinyl acetate) from 35 °C to 190 °C and poly(vinyl chloride) from 90 °C to 150 °C in the frequency range 10–2 –107 Hz and the pressure range 1–5000 bar are reported. Details of the pressure generating system and of the dielectric equipment are described.  相似文献   

15.
Anomalous dielectric relaxation behaviour is observed in the ferroelectric liquid crystalline polymer (viz. ferroelectric copolysiloxane (R)-COPS 11-10) around the ferroelectric SmC* to paraelectric SmA phase transition. Measurements have been performed on sample of thickness ~10 mum in indium-tin-oxide coated cell in the frequency range 10 Hz to 13 MHz. With increase of temperature, a gradual shift of the soft mode frequency towards the higher frequency side was observed, while a decrease in the relaxation strength was seen with the corresponding increase in temperature. The shifts of the soft modes in the SmC* and SmA phase are considered to be due to change in the viscosity of the polymer, as an increase in viscosity increases fluctuations of the coupling between the dipoles in the network even far from the paraelectric-ferroelectric phase transition. Application of a bias field causes a shift of the critical frequency towards the higher frequency side, while the dielectric strength ( Δε) decreases under the bias field. The Cole-Cole fitting parameters obtained from the best fit of the dielectric constant data are found to be consistent with other similar materials. Another relaxation mode (molecular mode) was also observed which comes into play in both the smectic phases (SmC* and SmA) and contributes to the dielectric permittivity.  相似文献   

16.
Anomalous dielectric relaxation behaviour is observed in the ferroelectric liquid crystalline polymer (viz. ferroelectric copolysiloxane (R)-COPS 11-10) around the ferroelectric SmC* to paraelectric SmA phase transition. Measurements have been performed on sample of thickness ~10 μm in indium-tin-oxide coated cell in the frequency range 10 Hz to 13 MHz. With increase of temperature, a gradual shift of the soft mode frequency towards the higher frequency side was observed, while a decrease in the relaxation strength was seen with the corresponding increase in temperature. The shifts of the soft modes in the SmC* and SmA phase are considered to be due to change in the viscosity of the polymer, as an increase in viscosity increases fluctuations of the coupling between the dipoles in the network even far from the paraelectric-ferroelectric phase transition. Application of a bias field causes a shift of the critical frequency towards the higher frequency side, while the dielectric strength (δε) decreases under the bias field. The Cole-Cole fitting parameters obtained from the best fit of the dielectric constant data are found to be consistent with other similar materials. Another relaxation mode (molecular mode) was also observed which comes into play in both the smectic phases (SmC% and SmA) and contributes to the dielectric permittivity.  相似文献   

17.
A simple and practical synthesis of the benzyl, allyl, and 4-nitrobenzyl esters of N-[2-(Fmoc)aminoethyl]glycine is described starting from the known N-(2-aminoethyl)glycine. These esters are stored as stable hydrochloride salts and were used in the synthesis of peptide nucleic acid monomers possessing bis-N-Boc-protected nucleobase moieties on the exocyclic amino groups of ethyl cytosin-1-ylacetate, ethyl adenin-9-ylacetate and ethyl (O(6)-benzylguanin-9-yl)acetate. Upon ester hydrolysis, the corresponding nucleobase acetic acids were coupled to N-[2-(Fmoc)aminoethyl]glycine benzyl ester or to N-[2-(Fmoc)aminoethyl]glycine allyl ester in order to retain the O(6) benzyl ether protecting group of guanine. The Fmoc/bis-N-Boc-protected monomers were successfully used in the Fmoc-mediated solid-phase peptide synthesis of mixed sequence 10-mer PNA oligomers and are shown to be a viable alternative to the currently most widely used Fmoc/Bhoc-protected peptide nucleic acid monomers.  相似文献   

18.
Karakurt  A.  Sara&#;  S.  Dalkara  S. 《Chromatographia》2012,75(19):1191-1197

The direct enantiomeric resolution of racemic 2-(1H-imidazole-1-yl)-1-naphthalene-2-yl)ethanol esters, 1-(naphthalene-2-yl)ethanol esters, and 1-(1-hydroxynaphthalene-2-yl)-2-(1H-imidazole-1-yl)ethanol on silica-based cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD) column is described. The separations were performed using mobile phases which consist of alcohol (methanol, ethanol or 2-propanol)/n-hexane in various proportions. The effect of structural features of the solutes along with the nature and concentration of alcohol in the mobile phase on the discrimination between the enantiomers was examined for different mobile phase compositions. The results suggest that not only the structure and concentration of alcohol in the mobile phase, but also the subtle structural differences in racemates can have a pronounced effect on enantiomeric separation and retention. Baseline separations were obtained for 2-(1H-imidazole-1-yl)-1-naphthalene-2-yl)ethanol esters carrying imidazole ring in addition to ester functional group in their structures. The α values of the resolved enantiomers of 2-(1H-imidazole-1-yl)-1-naphthalene-2-yl)ethanol esters were in the range of 1.49–1.62 while the R s values varied from 4.20 to 6.75 when methanol/n-hexane (70:30 v/v) was used as mobile phase.

  相似文献   

19.
The α and β dielectric relaxations of poly(hexamethylenesebacate) (HMS), poly(2-methyl-2-ethyl propylenesebacate) (MEPS), poly(1,4- dimethylbutylene sebacate) (DBS) and block copolymers of HMS and MEPS have been studied. The α relaxation is amenable to a W.L.F. analysis and is associated with the glass transition of the polymers. This relaxation moves to higher temperatures with increasing HMS content in HMS/MEPS block copolymers. All the polymers studied exhibit psuedo-activation energies of ~32 kcal/mole at the glass transition. It is concluded that because the superposition principle is operative in the block copolymers, the glass transition must be very similar in both polymers and morphology and degree of crystallinity do not greatly affect this transition. The β relaxation which has been associated with segmental relaxation of polymethylene segments in polymers is also shown to be a function of HMS/MEPS block copolymer composition and chemical structure. This relaxation takes place at lower temperatures with increased HMS content in the blocks and also shifts to lower temperatures with side chain substitution adjacent to the carbonyl group in the polymer. It is concluded that the β relaxation takes place in the amorphous and crystalline regions of the polymer.  相似文献   

20.
《Fluid Phase Equilibria》2002,201(1):107-118
The dielectric properties of various organic solvents and binary solvent mixtures at different temperatures over the frequency range of 10 MHz–20 GHz, are investigated using the time domain reflectometry technique, at various temperatures from 15 to 45 °C. These solvent mixtures—dimethylacetamide–2-nitrotoluene and dimethylsulphoxide–2-nitrotoluene as well as pure solvents display a Debye type dispersion. Their frequency-dependent dielectric properties can be summarized by the three parameters in the Debye equation: a static permittivity, permittivity at high frequency and a dielectric relaxation time constant. The free energy of activation for dipolar relaxation process and the Kirkwood correlation factor were determined using these fitting parameters, for these solvent systems at various temperatures. By using these dielectric parameters, the excess permittivity and excess inverse relaxation time is obtained. The static permittivity increases with increase in volume percentage of 2-nitrotoluene in dimethylacetamide as well as dimethylsulphoxide whereas the relaxation time decreases for both the systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号