首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
光场诱导的原子激光的量子相干性   总被引:1,自引:1,他引:0  
孔凡志  周明  黄春佳 《光学学报》2008,28(7):1395-1399
基于伞量子理论,分别研究了几种重要的光场作用下,从原子玻色-爱因斯坦凝聚(BEC)体耦合输出的原子激光的量子相干特性.结果表明,粒子数态光场诱导的原子激光总是反聚束的,相干态光场诱导的原子激光是任意阶相干的,而压缩相干态光场诱导的原子激光总是聚束的.表明用光场诱导产生的原子激光具有与初始光场完全相间的量子相干性质.  相似文献   

2.
Mekhov  I. B.  Ritsch  H. 《Laser Physics》2011,21(8):1486-1490
We consider the light scattering from ultracold atoms trapped in an optical lattice inside a cavity. In such a system, both the light and atomic motion should be treated in a fully quantum mechanical way. The unitary evolution of the light-matter quantum state is shown to demonstrate the non-trivial phase dependence, quadratic in the atom number. This is essentially due to the dynamical self-consistent nature of the light modes assumed in our model. The collapse of the quantum state during the photocounting process is analyzed as well. It corresponds to the measurement-induced atom number squeezing. We show that, at the final stage of the state collapse, the shrinking of the width of the atom number distribution behaves exponentially in time. This is much faster than the square root time dependence, obtained for the initial stage of the state collapse. The exponentially fast squeezing appears due to the discrete nature of the atom number distribution.  相似文献   

3.
与二项式光场相互作用的运动原子熵压缩   总被引:2,自引:2,他引:0  
运用量子信息熵理论,研究了二项式光场与运动二能级原子相互作用过程中运动原子的信息熵压缩。讨论了不同的原子初态和场的有关参数对原子信息熵压缩的影响。结果表明:选择原子初态、场模结构、场调节参数及原子运动速度可以调控原子信息熵的压缩方向、偶极矩分量值和压缩周期;适当的选择参数可得到持续性的原子信息熵压缩。  相似文献   

4.
原子间相互作用对光场和原子激光压缩性质的影响   总被引:3,自引:0,他引:3       下载免费PDF全文
李明  孙久勋 《物理学报》2006,55(6):2702-2707
对文献中给出的光场与二能级原子玻色-爱因斯坦凝聚体(BEC)相互作用系统的哈密顿量进行分析,表明文献中对原子间相互作用部分的处理有不合理之处,文献中的处理过高估计了原子间相互作用的贡献,从而对该哈密顿量作出了改进.用改进的哈密顿量解析地求解了非旋波近似下光子和原子算符的运动方程,并结合BEC的有关实验条件对哈密顿量中的有关参数作出了估计,研究了光场与原子玻色-爱因斯坦凝聚体相互作用系统中,光场和耦合输出相干原子束的压缩性质.结果表明:光场两正交分量的涨落均随时间按余弦规律周期性地变化,原子激光的两正交分量 关键词: 玻色-爱因斯坦凝聚 压缩相干态 光场的正交压缩 压缩原子激光  相似文献   

5.
We demonstrate the possibility of creating and controlling an ideal and trimerized optical Kagomé lattice, and study the low temperature physics of various atomic gases in such lattices. In the trimerized Kagomé lattice, a Bose gas exhibits a Mott transition with fractional filling factors, whereas a spinless interacting Fermi gas at 2/3 filling behaves as a quantum magnet on a triangular lattice. Finally, a Fermi-Fermi mixture at half-filling for both components represents a frustrated quantum antiferromagnet with a resonating-valence-bond ground state and quantum spin liquid behavior dominated by a continuous spectrum of singlet and triplet excitations. We discuss the method of preparing and observing such a quantum spin liquid employing molecular Bose condensates.  相似文献   

6.
A quantum analysis is presented of the motion and internal state of a two-level atom in a strong standing-wave light field. Coherent evolution of the atomic wave-packet, atomic dipole moment, and population inversion strongly depends on the ratio between the detuning from atom-field resonance and a characteristic atomic frequency. In the basis of dressed states, atomic motion is represented as wave-packet motion in two effective optical potentials. At exact resonance, coherent population trapping is observed when an atom with zero momentum is centered at a standing-wave node. When the detuning is comparable to the characteristic atomic frequency, the atom crossing a node may or may not undergo a transition between the potentials with probabilities that are similar in order of magnitude. In this detuning range, atomic wave packets proliferate at the nodes of the standing wave. This phenomenon is interpreted as a quantum manifestation of chaotic transport of classical atoms observed in earlier studies. For a certain detuning range, there exists an interval of initial momentum values such that the atom simultaneously oscillates in an optical potential well and moves as a ballistic particle. This behavior of a wave packet is a quantum analog of a classical random walk of an atom, when it enters and leaves optical potential wells in a seemingly irregular manner and freely moves both ways in a periodic standing light wave. In a far-detuned field, the transition probability between the potentials is low, and adiabatic wave-packet evolution corresponding to regular classical motion of an atom is observed.  相似文献   

7.
We propose a complete superradiant and subradiant states that can be manipulated and prepared in a three-dimensional atomic array. These subradiant states can be realized by absorbing a single photon and imprinting the spatially-dependent phases on the atomic system. We find that the collective decay rates and associated cooperative Lamb shifts are highly dependent on the phases we manage to imprint, and the subradiant state of long lifetime can be found for various lattice spacings and atom numbers. We also investigate both optically thin and thick atomic arrays, which can serve for systematic studies of super- and sub-radiance. Our proposal offers an alternative scheme for quantum memory of light in a three-dimensional array of two-level atoms, which is applicable and potentially advantageous in quantum information processing.  相似文献   

8.
光晶格中玻色-爱因斯坦凝聚体的自旋和磁研究   总被引:1,自引:0,他引:1  
张卫平 《物理》2003,32(2):76-79
近年应用光晶格(optical lattice)控制原子玻色-爱因斯坦凝聚体(BEC)的研究取得了突破性的进展。德国Munich研究小组首次在三维光晶格中观察到了超冷原子从BEC超流状态向Mott insulator状态的量子相变。这样的量子相变现象不仅具有重大的理论研究价值,而且为BEC的实际应用提供了新的途径。文章介绍了作者近来在光晶格中BEC的自旋和磁特性方面的一些研究进展,并探讨了它们在磁传感器及量子计算中的可能应用。  相似文献   

9.
Kong  Chao  Tang  ZhengHua  Lu  Ning  Chen  YaQi  Jin  Gui  Lei  DaJun  Jiang  ChunZhi  Yao  Min  Deng  HaiMing 《International Journal of Theoretical Physics》2021,60(8):3161-3176

We study the exact Bloch states of a spin-orbit (SO) coupled Bose-Einstein condensate (BEC) held in an optical lattice. Under a natural condition of the symmetry between the two species, we obtain two different forms of exact solutions corresponding to different existing conditions. Then, we analytically demonstrate that (a) the average atomic number per well can enlarge the region area (consisting of instability and stability parameter regions) existing exact solutions; (b) the sizes of the instability and stability parameter regions exhibit opposite variation trend with the increase in Rabi coupling strength, and the results of different solutions are just opposite. Besides, we find that spin-orbit coupling (SOC) results in the generation of spin-motion entanglement for the Bloch states, the SOC strength and lattice depth can influence the population transfer between two BEC components, and varying the SOC strength and lattice depth can also reveal the dynamical superfluid-insulator transition from the superfluid state to the critical insulating state. These results present a feasible scheme to manipulate the stable superfluid currents, which will be useful to control quantum transport of BEC.

  相似文献   

10.
Based on the quantum information theory, we have investigated the entropy squeezing of a moving two-level atom interacting with the coherent field via the quantum mechanical channel of the two-photon process. The results are compared with those of atomic squeezing based on the Heisenberg uncertainty relation. The influences of the atomic motion and field-mode structure parameter on the atomic entropy squeezing and on the control of noise of the quantum mechanical channel via the two-photon process are examined. Our results show that the squeezed period, duration of optimal entropy squeezing of a two-level atom and the noise of the quantum mechanical channel can be controlled by appropriately choosing the atomic motion and the field-mode structure parameter, respectively. The quantum mechanical channel of two-photon process is an ideal channel for quantum information (atomic quantum state) transmission. Quantum information entropy is a remarkably accurate measure of the atomic squeezing.  相似文献   

11.
We generalize the conception of quantum leakage for the atomic collective excitation states. By making use of the atomic coherence state approach, we study the influence of the atomic spatial motion on the symmetric collective states of 2-level atomic ensemble due to inhomogeneous coupling. In the macroscopic limit, we analyze the quantum decoherence of the collective atomic state by calculating the quantum leakage for a very large ensemble at a finite temperature. Our investigations show that the fidelity of the atomic system will not be good in the case of atom numberN→∞. Therefore, quantum leakage is an inevitable problem in using the atomic ensemble as a quantum information memory. The detailed calculations shed theoretical light on quantum processing using atomic ensemble collective qubit.  相似文献   

12.
We propose a scheme for preparing the squeezing of an atomic motion and an Einstein-Podolsky-Rosen state in position and momentum of a pair of distantly separated trapped atoms. The scheme utilizes the quantum nondemolition measurements with interaction between the cavity field and the motional state of the trapped atom in cavity QED. By illuminating the atoms with bichromatic light, the interaction Hamiltonian of the cross-Kerr effect between the cavity and atomic motion is generated to implement quantum nondemolition measurements.Received: 5 February 2003, Published online: 17 July 2003PACS: 03.67.Hk Quantum communication - 32.80.Lg Mechanical effects of light on atoms, molecules, and ions - 42.50.-p Quantum optics  相似文献   

13.
We extend the theory for laser cooling in a near-resonant optical lattice to include multiple excited hyperfine states. Simulations are performed treating the external degrees of freedom of the atom, i.e., position and momentum, classically, while the internal atomic states are treated quantum mechanically, allowing for arbitrary superpositions. Whereas theoretical treatments including only a single excited hyperfine state predict that the temperature should be a function of lattice depth only, except close to resonance, experiments have shown that the minimum temperature achieved depends also on the detuning from resonance of the lattice light. Our results resolve this discrepancy.  相似文献   

14.
The coherent interaction between a laser-driven single trapped atom and an optical high-finesse resonator allows one to produce entangled multiphoton light pulses on demand. The mechanism is based on the mechanical effect of light. The degree of entanglement can be controlled through the parameters of the laser excitation. Experimental realization of the scheme is within reach of current technology. A variation of the technique allows for controlled generation of entangled subsequent pulses, with the atomic motion serving as intermediate memory of the quantum state.  相似文献   

15.
We calculate the number statistics of a single-mode molecular field excited by photo-association or via a Feshbach resonance from an atomic Bose-Einstein condensate (BEC), a normal atomic Fermi gas, and a Fermi system with pair correlations (BCS state). We find that the molecule formation from a BEC leads for short times to a coherent molecular state in the quantum optical sense. Atoms in a normal Fermi gas, on the other hand, result for short times in a molecular field analog of a classical chaotic light source. The BCS situation is intermediate between the two and goes from producing an incoherent to a coherent molecular field with an increasing gap parameter. This distinct signature of the initial atomic state in the resulting molecular field makes single molecule counting into a powerful diagnostic tool.  相似文献   

16.
We present a scheme to generate a squeezed atom laser via stimulated Raman transition of the atoms in Bose-Einstein condensate (BEC) interacting with two light beams, including a weaker squeezed coherent probe light and a stronger classical pump light. The results show that the quantum fluctuation of this atom laser can be periodically squeezed. The squeezing depth of such atom laser is determined by the initial squeezing factor of the probe light, and the squeezing period of that is related to the mean number of atoms in the trap, the strength of interaction between squeezing light and BEC atoms, and the detuning of the light.  相似文献   

17.
A scheme for the generation of two-mode atomic laser   总被引:3,自引:0,他引:3  
The quantum dynamic behavior of the system composed of V-type three-level atomic Bose-Einstein con-densate (BEC) interacting with two-mode coherent light field has been studied. The results show that the atoms of V-type three-level atomic BEC, which are excited to higher-level states under the action of light field, still keep their properties of coherent states. It demonstrates theoretically that two-mode atomic laser may be prepared by V-type three-level atomic BEC.  相似文献   

18.
刘小娟  周并举  刘明伟  李寿存 《中国物理》2007,16(12):3685-3691
We investigate the preparation and the control of entangled states in a system with the two-mode coherent fields interacting with a moving two-level atom via the two-photon transition. We discuss entanglement properties between the two-mode coherent fields and a moving two-level atom by using the quantum reduced entropy, and those between the two-mode coherent fields by using the quantum relative entropy. In addition, we examine the influences of the atomic motion and field-mode structure parameter $p$ on the quantum entanglement of the system. Our results show that the period and the duration of the prepared maximal atom-field entangled states and the frequency of maximal two-mode field entangled states can be controlled, and that a sustained entangled state of the two-mode field, which is independent of atomic motion and the evolution time, can be obtained, by choosing appropriately the parameters of atomic motion, field-mode structure, initial state and interaction time of the system.  相似文献   

19.
邓瑞婕  闫智辉  贾晓军 《物理学报》2017,66(7):74201-074201
光场的量子存储不仅是构建量子计算机的重要基础,而且是实现量子中继和远距离量子通信的核心部分.由于存在不可避免的光学损耗,光学参量放大器产生的压缩真空态光场将变为压缩热态光场,不再是最小不确定态.因此,压缩热态光场的量子存储是实现量子互联网的关键.在原子系综中利用电磁诱导透明机制能够实现量子态在光场正交分量和原子自旋波之间的相互映射,即受控量子存储.本文根据量子存储的保真度边界,研究了实现压缩热态光场量子存储的条件.量子存储的保真度边界是通过经典手段能够达到的最大保真度,当保真度大于该边界时,就实现了量子存储.通过数值计算分析了不同情况下压缩热态光场的量子存储保真度边界,以及存储保真度随存储效率的变化关系,得到了实现量子存储的条件,为连续变量量子存储实验设计提供了直接参考.  相似文献   

20.
We study the effect of a one dimensional optical lattice in a cavity field with quantum properties on the superfluid dynamics of a Bose-Einstein condensate (BEC). In the cavity the influence of atomic backaction and the external driving pump become important and modify the optical potential. Due to the coupling between the condensate wavefunction and the cavity modes, the cavity light field develops a band structure. This study reveals that the pump and the cavity emerges as a new handle to control the superfluid properties of the BEC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号