首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Infrared spectroscopy of large-sized protonated methanol clusters, H(+)(MeOH)(n) (n = 4-15), was carried out in the OH stretch region to characterize the development of the hydrogen bond network with the cluster size, n. The band intensity of the free OH stretching mode decreased with n, and the band finally disappeared at n = 7. On the other hand, the broad absorption band due to hydrogen-bonded OH stretches exhibited a remarkable shift with the cluster size, and it finally converged on 3300 cm(-1) for n >/= approximately 10. The size dependence of the infrared spectra was morphologically interpreted in terms of the formation of the bicyclic hydrogen-bonded structure of the clusters.  相似文献   

2.
Infrared photodissociation spectra of Al(+)(CH(3)OH)(n) (n = 1-4) and Al(+)(CH(3)OH)(n)-Ar (n = 1-3) were measured in the OH stretching region, 3000-3800 cm(-1). For n = 1 and 2, sharp absorption bands were observed in the free OH stretching region, all of which were well reproduced by the spectra calculated for the solvated-type geometry with no hydrogen bond. For n = 3 and 4, there were broad vibrational bands in the energy region of hydrogen-bonded OH stretching vibrations, 3000-3500 cm(-1). Energies of possible isomers for the Al(+)(CH(3)OH)(3),4 ions with hydrogen bonds were calculated in order to assign these bands. It was found that the third and fourth methanol molecules form hydrogen bonds with methanol molecules in the first solvation shell, rather than a direct bonding with the Al(+) ion. For the Al(+)(CH(3)OH)(n) clusters with n = 1-4, we obtained no evidence of the insertion reaction, which occurs in Al(+)(H(2)O)(n). One possible explanation of the difference between these two systems is that the potential energy barriers between the solvated and inserted isomers in the Al(+)(CH(3)OH)(n) system is too high to form the inserted-type isomers.  相似文献   

3.
Infrared spectra of Li(NH3)(n) clusters as a function of size are reported for the first time. Spectra have been recorded in the N-H stretching region for n=4-->7 using a mass-selective photodissociation technique. For the n=4 cluster, three distinct IR absorption bands are seen over a relatively narrow region, whereas the larger clusters yield additional features at higher frequencies. Ab initio calculations have been carried out in support of these experiments for the specific cases of n=4 and 5 for various isomers of these clusters. The bands observed in the spectrum for Li(NH3)(4) can all be attributed to N-H stretching vibrations from solvent molecules in the first solvation shell. The appearance of higher frequency N-H stretching bands for n > or =5 is assigned to the presence of ammonia molecules located in a second solvent shell. These data provide strong support for previous suggestions, based on gas phase photoionization measurements, that the first solvation shell for Li(NH3)(n) is complete at n=4. They are also consistent with neutron diffraction studies of concentrated lithium/liquid ammonia solutions, where Li(NH3)(4) is found to be the basic structural motif.  相似文献   

4.
Size resolved IR action spectra of neutral sodium doped methanol clusters have been measured using IR excitation modulated photoionisation mass spectroscopy. The Na(CH(3)OH)(n) clusters were generated in a supersonic He seeded expansion of methanol by subsequent Na doping in a pick-up cell. A combined analysis of IR action spectra, IP evolutions and harmonic predictions of IR spectra (using density functional theory) of the most stable structures revealed that for n = 4, 5 structures with an exterior Na atom showing high ionisation potentials (IPs) of ~4 eV dominate, while for n = 6, 7 clusters with lower IPs (~3.2 eV) featuring fully solvated Na atoms and solvated electrons emerge and dominate the IR action spectra. For n = 4 simulations of photoionisation spectra using an ab initio MD approach confirm the dominance of exterior structures and explain the previously reported appearance IP of 3.48 eV by small fractions of clusters with partly solvated Na atoms. Only for this cluster size a shift in the isomer composition with cluster temperature has been observed, which may be related to kinetic stabilisation of less Na solvated clusters at low temperatures. Features of slow fragmentation dynamics of cationic Na(+)(CH(3)OH)(6) clusters have been observed for the photoionisation near the adiabatic limit. This finding points to the relevance of previously proposed non-vertical photoionisation dynamics of this system.  相似文献   

5.
Wu Q  Lavigne JA  Tao Y  D'Iorio M  Wang S 《Inorganic chemistry》2000,39(23):5248-5254
A new 7-azaindole zinc(II) compound, Zn(7-azaindole)2(CH3COO)2 (1), a new ligand N-(2-pyridyl)-7-azaindole (NPA), and two NPA zinc(II) complexes, Zn(NPA)(CH3COO)2 (2) and Zn(NPA)((S)-(+)-CH3CH2CH(CH3)COO)2 (3), have been synthesized and structurally characterized. Compound 1 has a tetrahedral geometry, whereas compounds 2 and 3 have irregular six-coordinate geometry. The NPA ligand in compounds 2 and 3 functions as a bidentate chelate to the zinc center. Compound 1 has a blue luminescence in the solution and the solid state. Compounds 2 and 3 emit a blue color in the solid state. In solution, compounds 2 and 3 are fluxional, as established by 1H NMR experiments. Compound 1 is thermally stable, whereas compounds 2 and 3 undergo decomposition when heated in the solid state. A blue electroluminescent device using compound 1 as the emitting layer has been fabricated. Crystal data: NPA, monoclinic, P2(1)/c, a = 13.993(5) A, b = 8.456(3) A, c = 16.886(5) A, beta = 104.666(12) degrees, V = 1932.9(11) A3; 1, triclinic, P1, a = 9.5114(18) A, b = 10.460(7) A, c = 11.002(3) A, alpha = 117.18(3) degrees, beta = 103.287(18) degrees, gamma = 90.94(2) degrees, V = 938.3(7) A3; 2, monoclinic, C2/c, a = 13.234(6) A, b = 9.373(3) A, c = 13.956(7) A, beta = 113.24(3) degrees, V = 1590.7(12) A3; 3, monoclinic, P2(1), a = 11.047(7) A, b = 15.343(9) A, c = 13.785(8) A, beta = 100.123(9) degrees, V = 2300(2) A3.  相似文献   

6.
Ultrafast excited-state intermolecular proton transfer (PT) reactions in 7-azaindole(methanol)(n) (n = 1-3) [7AI(MeOH)(n=1-3)] complexes were performed using dynamics simulations. These complexes were first optimized at the RI-ADC(2)/SVP-SV(P) level in the gas phase. The ground-state structures with the lowest energy were also investigated and presented. On-the-fly dynamics simulations for the first-excited state were employed to investigate reaction mechanisms and time evolution of PT processes. The PT characteristics of the reactions were confirmed by the nonexistence of crossings between S(ππ*) and S(πσ*) states. Excited-state dynamics results for all complexes exhibit excited-state multiple-proton transfer (ESmultiPT) reactions via methanol molecules along an intermolecular hydrogen-bonded network. In particular, the two methanol molecules of a 7AI(MeOH)(2) cluster assist the excited-state triple-proton transfer (ESTPT) reaction effectively with highest probability of PT.  相似文献   

7.
The excited-state tautomerization of 7-azaindole (7AI) complexes bonded with either one or two methanol molecule(s) was studied by systematic quantum mechanical calculations in the gas phases. Electronic structures and energies for the reactant, transition state (TS), and product were computed at the complete active space self-consistent field (CASSCF) levels with the second-order multireference perturbation theory (MRPT2) to consider the dynamic electron correlation. The time-dependent density functional theory (TDDFT) was also used for comparison. The excited-state double proton transfer (ESDPT) in 7AI-CH(3)OH occurs in a concerted but asynchronous mechanism. Similarly, such paths are also found in the two transition states during the excited-state triple proton transfer (ESTPT) of the 7AI-(CH(3)OH)(2) complex. In the first TS, the pyrrole ring proton first migrated to methanol, while in the second the methanol proton moved first to the pyridine ring. The CASSCF level with the MRPT2 correction showed that the former path was much preferable to the latter, and the ESDPT is much slower than the ESTPT. Additionally, the vibrational-mode enhanced tautomerization in the 7AI-(CH(3)OH)(2) complex was also studied. We found that the excitation of the low-frequency mode shortens the reaction path to increase the tautomerization rate. Overall, most TDDFT methods used in this study predicted different TS structures and barriers from the CASSCF methods with MRPT2 corrections.  相似文献   

8.
Infrared predissociation (IRPD) spectra of Li(+)(CH(4))(1)Ar(n), n = 1-6, clusters are reported in the C-H stretching region from 2800 to 3100 cm(-1). The Li(+) electric field perturbs CH(4) lifting its tetrahedral symmetry and gives rise to multiple IR active modes. The observed bands arise from the totally symmetric vibrational mode, v(1), and the triple degenerate vibrational mode, v(3). Each band is shifted to lower frequency relative to the unperturbed CH(4) values. As the number of argon atoms is increased, the C-H red shift becomes less pronounced until the bands are essentially unchanged from n = 5 to n = 6. For n = 6, additional vibrational features were observed which suggested the presence of an additional conformer. By monitoring different photodissociation loss channels (loss of three Ar or loss of CH(4)), one conformer was uniquely associated with the CH(4) loss channel, with two bands at 2914 and 3017 cm(-1), values nearly identical to the neutral CH(4) gas-phase v(1) and v(3) frequencies. With supporting ab initio calculations, the two conformers were identified, both with a first solvent shell size of six. The major conformer had CH(4) in the first shell, while the conformer exclusively present in the CH(4) loss channel had six argons in the first shell and CH(4) in the second shell. This conformer is +11.89 kJ/mol higher in energy than the minimum energy conformer at the MP2/aug-cc-pVDZ level. B3LYP/6-31+G* level vibrational frequencies and MP2/aug-cc-pVDZ level single-point binding energies, D(e) (kJ/mol), are reported to support the interpretation of the experimental data.  相似文献   

9.
We investigated IR spectra in the CH- and OH-stretching regions of size-selected methanol clusters, (CH(3)OH)(n) with n = 2-6, in a pulsed supersonic jet by using the IR-VUV (vacuum-ultraviolet) ionization technique. VUV emission at 118 nm served as the source of ionization in a time-of-flight mass spectrometer. The tunable IR laser emission served as a source of predissociation or excitation before ionization. The variations of intensity of protonated methanol cluster ions (CH(3)OH)(n)H(+) and CH(3)OH(+) and (CH(3)OH)(2)(+) were monitored as the IR laser light was tuned across the range 2650-3750 cm(-1). Careful processing of these action spectra based on photoionization efficiencies and the production and loss of each cluster due to photodissociation yielded IR spectra of the size-selected clusters. Spectra of methanol clusters in the OH region have been extensively investigated; our results are consistent with previous reports, except that the band near 3675 cm(-1) is identified as being associated with the proton acceptor of (CH(3)OH)(2). Spectra in the CH region are new. In the region 2800-3050 cm(-1), bands near 2845, 2956, and 3007 cm(-1) for CH(3)OH split into 2823, 2849, 2934, 2955, 2984, and 3006 cm(-1) for (CH(3)OH)(2) that correspond to proton donor and proton acceptor, indicating that the methanol dimer has a preferred open-chain structure. In contrast, for (CH(3)OH)(3), the splitting diminishes and the bands near 2837, 2954, and 2987 cm(-1) become narrower, indicating a preferred cyclic structure. Anharmonic vibrational wavenumbers predicted for the methanol open-chain dimer and the cyclic trimer with the B3LYP∕VPT2∕ANO1 level of theory are consistent with experimental results. For the tetramer and pentamer, the spectral pattern similar to that of the trimer but with greater widths was observed, indicating that the most stable structures are also cyclic.  相似文献   

10.
We report on ab initio calculations at the G2(MP2) level of the structures and Al-N(P) bond complexation energies of the (CH(3))(n)H(3)(-)(n)AlNX(3) and (CH(3))(n)H(3)(-)(n)()AlPX(3) (X = H, F, and Cl; n = 0-3) donor-acceptor complexes. For the (CH(3))(3)AlNX(3) and (CH(3))(3)AlPX(3) complexes, the C(3)(v) symmetry is found to be favored, and for the other complexes the C(s) symmetry is found to be favored. The G2(MP2) calculated complexation energies show for the amine ligands the trend NH(3) > NCl(3) > NF(3). A similar trend PH(3) approximately PCl(3) > PF(3) is predicted for the phosphane ligands. The NBO partitioning scheme shows that there is no correlation between the stability and the charge transfer.  相似文献   

11.
The structure and harmonic vibrations of Ga(n)N(n) (n = 3-10) clusters have been investigated using the B3LYP (Becke 3-parameter-Lee-Yang-Parr) density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1029 cm(-1) for n = 10. Comparisons with C2n, B(n)N(n), and Al(n)N(n) clusters, the structure and bonding type for the Ga(n)N(n) (n=3-10) clusters are consistent with those of the C2n (n = 3, 5, 7, ...) clusters, the B(n)N(n) (n = 3-10), and Al(n)N(n) (n = 3-9) clusters.  相似文献   

12.
Density functional theory (DFT) calculations of protonated methanol-water mixed clusters, H (+)(MeOH) 1(H 2O) n ( n = 1-8), were extensively carried out to analyze the hydrogen bond structures of the clusters. Various structural isomers were energy optimized, and their relative energies with zero point energy corrections and temperature dependence of the free energies were examined. Coexistence of different morphological isomers was suggested. Infrared spectra were simulated on the basis of the optimized structures. The infrared spectra were also experimentally measured for n = 3-9 in the OH stretching vibrational region. The observed broad bands in the hydrogen-bonded OH stretch region were assigned in comparison with the simulations. From the DFT calculations, the preferential proton location was also investigated. Clear correlations between the excess proton location and the cluster morphology were found.  相似文献   

13.
A tabletop soft x-ray laser is applied for the first time as a high energy photon source for chemical dynamics experiments in the study of water, methanol, and ammonia clusters through time of flight mass spectroscopy. The 26.5 eV/photon laser (pulse time duration of approximately 1 ns) is employed as a single photon ionization source for the detection of these clusters. Only a small fraction of the photon energy is deposited in the cluster for metastable dissociation of cluster ions, and most of it is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the cluster mass spectra. Unprotonated ammonia clusters are observed in the protonated cluster ion size range 2< or =n< or =22. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated to be (0.6-2.7)x10(4), (3.6-6.0)x10(3), and (0.8-2.0)x10(4) s(-1) for the protonated water (9< or =n< or =24), methanol (5< or =n< or =10), and ammonia (5< or =n< or =18) clusters, respectively. The temperatures of the neutral clusters are estimated to be between 40 and 200 K for water clusters (10< or =n< or =21), and 50-100 K for methanol clusters (6< or =n< or =10). Products with losses of up to five H atoms are observed in the mass spectrum of the neutral ammonia dimer. Large ammonia clusters (NH(3))(n) (n>3) do not lose more than three H atoms in the photoionization/photodissociation process. For all three cluster systems studied, single photon ionization with a 26.5 eV photon yields near threshold ionization. The temperature of these three cluster systems increases with increasing cluster size over the above-indicated ranges.  相似文献   

14.
Approximate theoretical normal and resonant Auger spectra for a series of methylcyano ketones were calculated. Compared with our previous procedure, a set of initial molecular orbitals (MOs) for Auger decay probability calculations of the normal Auger process was modified by changing from a set of ground state MOs to a set of core-holed MOs. For the resonant Auger process, a set of MOs was also modified in the same manner. Furthermore, the bond dissociation factor, which we introduced in the previous article, was also calculated to estimate the bond strength after Auger decay. The site-selectivity for a series of methylcyano ketones was qualitatively explained, but a significant state-specificity was not observed. Molecular size dependence after Auger decay was also discussed.  相似文献   

15.
Chromium-doped silicon clusters, CrSi(n) (-)(n = 3-12), were investigated with anion photoelectron spectroscopy and density functional theory calculations. The combination of experimental measurement and theoretical calculations reveals that the onset of endohedral structure in CrSi(n) (-) clusters occurs at n = 10 and the magnetic properties of the CrSi(n) (-) clusters are correlated to their geometric structures. The most stable isomers of CrSi(n) (-) from n = 3 to 9 have exohedral structures with magnetic moments of 3-5μ(B) while those of CrSi(10) (-), CrSi(11) (-), and CrSi(12) (-) have endohedral structures and magnetic moments of 1μ(B.).  相似文献   

16.
We conducted a combined anion photoelectron spectroscopy and density functional theory study on the structural evolution of copper-doped silicon clusters, CuSi(n)(-) (n = 4-18). Based on the comparison between the experiments and theoretical calculations, CuSi(12)(-) is suggested to be the smallest fully endohedral cluster. The low-lying isomers of CuSi(n)(-) with n ≥ 12 are dominated by endohedral structures, those of CuSi(n)(-) with n < 12 are dominated by exohedral structures. The most stable structure of CuSi(12)(-) is a double-chair endohedral structure with the copper atom sandwiched between two chair-style Si(6) rings or, in another word, encapsulated in a distorted Si(12) hexagonal prism cage. CuSi(14)(-) has an interesting C(3h) symmetry structure, in which the Si(14) cage is composed by three four-membered rings and six five-membered rings.  相似文献   

17.
The infrared photodissociation spectra of [(CO 2) n (CH 3OH) m ] (-) ( n = 1-4, m = 1, 2) are measured in the 2700-3700 cm (-1) range. The observed spectra consist of an intense broad band characteristic of hydrogen-bonded OH stretching vibrations at approximately 3300 cm (-1) and congested vibrational bands around 2900 cm (-1). No photofragment signal is observed for [(CO 2) 1,2(CH 3OH) 1] (-) in the spectral range studied. Ab initio calculations are performed at the MP2/6-311++G** level to obtain structural information such as optimized structures, stabilization energies, and vibrational frequencies of [(CO 2) n (CH 3OH) m ] (-). Comparison between the experimental and the theoretical results reveals the structural properties of [(CO 2) n (CH 3OH) m ] (-): (1) the incorporated CH 3OH interacts directly with either CO 2 (-) or C 2O 4 (-) core by forming an O-HO linkage; (2) the introduction of CH 3OH promotes charge localization in the clusters via the hydrogen-bond formation, resulting in the predominance of CO 2 (-).(CH 3OH) m (CO 2) n-1 isomeric forms over C 2O 4 (-).(CH 3OH) m (CO 2) n-2 ; (3) the hydroxyl group of CH 3OH provides an additional solvation cite for neutral CO 2 molecules.  相似文献   

18.
Lee TB  McKee ML 《Inorganic chemistry》2012,51(7):4205-4214
The reduction potentials (E°(Red) versus SHE) of hypercloso boron hydrides B(n)H(n) (n = 6-13) and B(12)X(12) (X = F, Cl, OH, and CH(3)) in water have been computed using the Conductor-like Polarizable Continuum Model (CPCM) and the Solvation Model Density (SMD) method for solvation modeling. The B3LYP/aug-cc-pvtz and M06-2X/aug-cc-pvtz as well as G4 level of theory were applied to determine the free energies of the first and second electron attachment (ΔG(E.A.)) to boron clusters. The solvation free energies (ΔG(solv)) greatly depend on the choice of the cavity set (UAKS, Pauling, or SMD) while the dependence on the choice of exchange/correlation functional is modest. The SMD cavity set gives the largest ΔΔG(solv) for B(n)H(n)(0/-) and B(n)H(n)(-/2-) while the UAKS cavity set gives the smallest ΔΔG(solv) value. The E°(Red) of B(n)H(n)(-/2-) (n = 6-12) with the G4/M06-2X(Pauling) (energy/solvation(cavity)) combination agrees within 0.2 V of experimental values. The experimental oxidative stability (E(1/2)) of B(n)X(n)(2-) (X = F, Cl, OH, and CH(3)) is usually located between the values predicted using the B3LYP and M06-2X functionals. The disproportionation free energies (ΔG(dpro)) of 2B(n)H(n)(-) → B(n)H(n) + B(n)H(n)(2-) reveal that the stabilities of B(n)H(n)(-) (n = 6-13) to disproportionation decrease in the order B(8)H(8)(-) > B(9)H(9)(-) > B(11)H(11)(-) > B(10)H(10)(-). The spin densities in B(12)X(12)(-) (X = F, Cl, OH, and CH(3)) tend to delocalize on the boron atoms rather than on the exterior functional groups. The partitioning of ΔG(solv)(B(n)H(n)(2-)) over spheres allows a rationalization of the nonlinear correlation between ΔG(E.A.) and E°(Red) for B(6)H(6)(-/2-), B(11)H(11)(-/2-), and B(13)H(13)(-/2-).  相似文献   

19.
Equilibrium geometries, charge distributions, stabilities, and electronic properties of the Ag-adsorbed (SiO(2))(n) (n=1-7) clusters have been investigated using density functional theory with generalized gradient approximation for exchange-correlation functional. The results show that the Ag atom preferably binds to silicon atom with dangling bond in nearly a fixed direction, and the incoming Ag atoms tend to cluster on the existing Ag cluster leading to the formation of Ag islands. The adsorbed Ag atom only causes charge redistributions of the atoms near itself. The effect of the adsorbed Ag atom on the bonding natures and structural features of the silica clusters is minor, attributing to the tendency of stability order of Ag(SiO(2))(n) (n=1-7) clusters in consistent with silica clusters. In addition, the energy gaps between the highest occupied and lowest unoccupied molecular orbitals remarkably decrease compared with the pure (SiO(2))(n) (n=1-7) clusters, eventually approaching the near infrared radiation region. This suggests that these small clusters may be an alternative material which has a similar functionality in treating cancer to the large gold-coated silica nanoshells and the small Au(3)(SiO(2))(3) cluster.  相似文献   

20.
The structure and harmonic vibrations of Be(n)O(n) (n=3-10) clusters have been investigated using density functional theory. All structures are found to be cumulenic D(nh) rings (equal bonds, alternating angles), with one intense out of plane mode and three infrared-active degenerate modes, of which the highest one is extremely intense and asymptotically increases to 1597 cm(-1) for n=10. Comparisons with C(2n) clusters and B(n)N(n) clusters, the structure and bonding type for the Be(n)O(n) clusters are consistent with those of the C(2n) (n=3, 5, 7, ...) clusters and the B(n)N(n) clusters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号