首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The all-electron full configuration interaction (FCI) vertical excitation energies for some low lying valence and Rydberg excited states of BeH are presented in this article. A basis set of valence atomic natural orbitals has been augmented with a series of Rydberg orbitals that have been generated as centered onto the Be atom. The resulting basis set can be described as 4s2p1d/2s1p (Be/H) + 4s4p3d. It allows to calculate Rydberg states up to n= {3,4,5} of the s, p, and d series of Rydberg states. The FCI vertical ionization potential for the same basis set and geometry amounts to 8.298 eV. Other properties such as FCI electric dipole and quadrupole moments and FCI transition dipole and quadrupole moments have also been calculated. The results provide a set of benchmark values for energies, wave functions, properties, and transition properties for the five electron BeH molecule. Most of the states have large multiconfigurational character in spite of their essentially single excited nature and a number of them present an important Rydberg-valence mixing that is achieved through the mixed nature of the particle MO of the single excitations.  相似文献   

2.
The full configuration interaction (FCI) study of the singlets vertical spectrum of the neutral beryllium trimer has been performed using atomic natural orbitals [3s2p1d] basis set. The FCI triangular equilibrium structure of the ground state has been used to calculate the FCI vertical excitation energies up to 4.8 eV. The FCI vertical ionization potential for the same geometry and basis set amounts to 7.6292 eV. The FCI dipole and quadrupole transition moments from the ground state are reported as well. The FCI electric quadrupole moment of the X (3)A(1) (') ground state has been also calculated with the same basis set (Theta(zz)=-2.6461 a.u., Theta(xx)=Theta(yy)=-1/2Theta(zz)). Twelve of the 19 calculated excited singlets are doubly excited states. Most of the states have large multiconfigurational character. These results provide benchmark values for electronic correlation multireference methods. (4ex6MO)CAS-SDCI values for the same energies and properties are also reported.  相似文献   

3.
The full configuration interaction (FCI) study of the ground state of the neutral beryllium trimer has been performed using an atomic natural orbitals [3s2p1d] basis set. Both triangular and linear structures have been considered for the Be(3) cluster. The optimal geometry for the equilateral triangle has been calculated. The potential energy cut sections along the normal a(1)(') mode and one of the components of the e(') mode have then been studied. The FCI symmetric atomization potential of the linear cluster is also reported. It shows a secondary van der Waals minimum at a long bond distance. All singular points in the potential energy curves are characterized. Other properties, like dissociation energies D(e) and vibrational frequencies, have been estimated from a fourth-order fitting of a large range of points around the minima. The calculated FCI wave number values for the nu(1) and nu(2) normal modes are (467.33+/-0.43) cm(-1) and (390.77+/-0.56) cm(-1).  相似文献   

4.
Ab initio calculations are reported for the simplest heteronuclear metal cluster, LiBe. Full spin-orbit configuration interaction calculations in the context of relativistic effective core potentials lead to accurate potential energy curves for low-lying states. Results are compared with recent experimental observations and with all electron multi-reference configuration interaction calculations.  相似文献   

5.
The electronic structure of the benzyl radical in its ground state has been computed using a model Hamiltonian due to Pariser–Parr with full configuration interaction as well as with different truncated configurational sets built on SCF open-shell orbitals. The correlation energy corresponding to this model was found to be equal to –0.929722 eV. With the singly excited configurations only 18% of this energy is taken into account. By extending the basis to include the doubly excited configurations one can account for 94% of the correlation energy. An analysis of the accuracy of the proton hyperfine splitting calculation caused by inaccurate computation of the wave function is given. If only singly and even doubly excited configurations are taken into account one cannot hope to obtain splittings with an accuracy of more than 0.5 g. Inclusion of triply excited configurations lowers this error by one order. In addition, the use of the simple McConnell relation may lead to an error in splitting calculations of no less than 1.5 g.  相似文献   

6.
We present relativistic configuration interaction calculations with the spin-free no-pair hamiltonian on the gold hydride molecule, treating the ground state as well as the eleven lowest excited states. The calculations provide a picture of the bonding in theX 1Σ+ ground state consistent with previous work on this species using four-component spinors: compared to non-relativistic calculations, the dipole moment is reduced by a factor of two, hybridization (and thus participation ofd orbitals at the bonding) is greatly enhanced, the bond length is shortened by 20 pm, and the dissociation energy is increased by 50%. Comparison of the spin-averaged potential curves of the excited states with experiment suggests a reinterpretation of theC 1Σ+ as the 0+ fine structure component of 23Π and the prediction of a weakly bound3Σ+ state with weak transitions to the ground state in the range of 2.9–3.1 eV.  相似文献   

7.
Full configuration-interaction (FCI) calculations have been performed for the ã 1A1–b1B1and ã 1A1–(2)1A1transitions in CH2 and for selected dipole and quadrupole transitions in BeO. The FCI transition moments are compared to those obtained from correlation treatments that truncate the n-particle expansion. The state-averaged MCSCF/SOCI and FCI results agree well, even for BeO, where the CASSCF level nonorthogonal transition moment differs from the state-averaged CASSCF transition moment.  相似文献   

8.
Non-Born-Oppenheimer variational calculations employing explicitly correlated Gaussian basis functions have been performed for the ground states of the beryllium monohydride molecule (BeH) and its ion (BeH+), as well as for the beryllium atom (Be) and its ion (Be+). An approach based on the analytical energy gradient calculated with respect to the Gaussian exponential parameters was employed. The calculated energies were used to determine the ionization potential of BeH and the dissociation energies of BeH and BeH+. Also, the generated wave functions were used to compute various expectation values, such as the average interparticle distances and the nucleus-nucleus correlation functions.  相似文献   

9.
For the lowest energy states of the MgO molecule, zero-order multiconfigurational wavefunctions are constructed by an iterative process, the remaining configuration interaction being treated by a Rayleigh—Schrödinger second-order perturbation. The calculated energies compare well with the experimental spectrum. The ground state appears to be a1Σ+ state built essentially from the closed-shell SCF determinant and a di-excited (6σ)2 → (7σ)2 determinant.  相似文献   

10.
The direct CI method, which avoids explicit calculation of the Hamiltonian matrix, is presented in a new form. The method is linked with Davidson's algorithm for iterative evaluation of the ground state eigenvector. The viability of the method is indicated by the test calculations on water which are described.  相似文献   

11.
Summary The calculation of electronically excited states with the internally contracted multiconfiguration-reference configuration interaction (CMRCI) method is discussed. A straightforward method, in which contracted functions for all states are included in the basis, is shown to be very accurate and stable even in cases of narrow avoided crossings. However, the expense strongly increases with the number of states. A new method is proposed, which employs different contracted basis sets for each state, and in which eigensolutions of the Hamiltonian are found using an approximate projection operator technique. The computational effort for this method scales only linearly with the number of states. The two methods are compared for various applications.Dedicated in honor of Prof. Klaus Ruedenberg  相似文献   

12.
The potential energy curves and spectroscopic constants of the ground and 32 low-lying electronic states of ZrC have been studied by employing multireference configuration interaction methods, in conjunction with relativistic effective core potentials and 5s3p3d1f, 3s3p1d basis sets con Zr and C, respectively. We have determined that the ground state is (3)Sigma(+). However there are two low-lying (1)Sigma(+) states (below 5000 cm(-1)) which strongly interact resulting in avoided crossings. The lowest (1)Sigma(+) state corresponds to a combination of 1sigma(2) Xsigma(2) 1pi(4) configurations whereas the second is an open shell singlet 1sigma(2) 2sigma(1) 3sigma(1) 1pi(4). Several avoided crossings were observed, for (1)Pi, (3)Pi, (1)Delta, (3)Sigma(+), and (3)Delta states. We have identified (3)Pi and (1)Pi lying at 4367 and 5797 cm(-1), respectively. The results are in good agreement with the recent experimental findings of Rixon et al. [J. Mol. Spectrosc. 228, 554 (2004)], and indicate that the (3)Pi-(3)Sigma(+), and (1)Pi-(1)Sigma(+), bands located between 16 000-19 000 cm(-1) are extremely complex due to near degeneracy of several (1)Pi and (3)Pi states. We also have identified a (1)Sigma(+) state in the same region that may interfere with the (1)Pi emission bands. The present results not only shed further light into the spectra of ZrC but also predict yet to be observed systems.  相似文献   

13.
The N2(+) states lying in the ionization region of 26-45 eV and the dissociation dynamics are investigated by high-resolution threshold photoelectron spectroscopy and threshold photoelectron-photoion coincidence spectroscopy. The threshold photoelectron spectrum exhibits several broad bands as well as sharp peaks. The band features are assigned to the N2(+) states associated with the removal of an inner-valence electron, by a comparison with a configuration interaction calculation. In contrast, most of the sharp peaks on the threshold photoelectron spectrum are allocated to ionic Rydberg states converging to N2(2+). Dissociation products formed from the inner-valence N2(+) states are determined by threshold photoelectron-photoion coincidence spectroscopy. The dissociation dynamics of the inner-valence ionic states is discussed with reference to the potential energy curves calculated.  相似文献   

14.
We present a new high performance configuration interaction code optimally designed for the calculation of the lowest-energy eigenstates of a few electrons in semiconductor quantum dots (also called artificial atoms) in the strong interaction regime. The implementation relies on a single-particle representation, but it is independent of the choice of the single-particle basis and, therefore, of the details of the device and configuration of external fields. Assuming no truncation of the Fock space of Slater determinants generated from the chosen single-particle basis, the code may tackle regimes where Coulomb interaction very effectively mixes many determinants. Typical strongly correlated systems lead to very large diagonalization problems; in our implementation, the secular equation is reduced to its minimal rank by exploiting the symmetry of the effective-mass interacting Hamiltonian, including square total spin. The resulting Hamiltonian is diagonalized via parallel implementation of the Lanczos algorithm. The code gives access to both wave functions and energies of first excited states. Excellent code scalability in a parallel environment is demonstrated; accuracy is tested for the case of up to eight electrons confined in a two-dimensional harmonic trap as the density is progressively diluted up to the Wigner regime, where correlations become dominant. Comparison with previous quantum Monte Carlo simulations in the Wigner regime demonstrates power and flexibility of the method.  相似文献   

15.
The origin of the features in the Ni 3s X-ray photoelectron spectrum of NiO is investigated using a non-orthogonal configuration interaction approach for an embedded [NiO6] cluster. We study the interplay of inter-atomic screening with the metal core hole and intra-atomic exchange and electron correlation effects. We show that the spectrum can be described in terms of only few key configurations, provided that orbital relaxation effects are explicitly taken into account for the excited charge transfer configurations. The strength of this approach has been demonstrated earlier for those final states that have a high-spin coupling. In the present contribution the analysis is extended to include low-spin coupled 3s-hole states. The effects of enlarging the embedded cluster and of an improved representation of the nearest cluster surroundings were studied for the high-spin final states. We found only minor effects on the computed peak separations.  相似文献   

16.
17.
18.
Ab initio extensive configuration interaction calculations were carried out on the π-electron states of benzene. Among the three π → π*(e1g → e2u) singlet states, 1B2u(S1). 1B1u(S2), and 1E1u(S3), the π* orbital was found to be velence-like in S1 and S2, but diffuse in S3. All three corresponding triplet states, 3B1u(T1) and 3B2u(T3), were found to be valence-like. The valence-like 1E2g(S4) and 3E2g(T4) states were found to have significant double-excitation character, and were estimated to lie somewhat above S3 and T3, respectively. No low-lying S5 and T5 states were found. Several low-lying Rydberg states were identified.  相似文献   

19.
A parallel full configuration interaction (FCI) code, implemented on a distributed memory MPP computer, has been modified in order to use a direct algorithm to compute the lists of mono- and biexcitations each time they are needed. We were able to perform FCI calculations on the ground state of the acetylene molecule with two different basis sets, corresponding to more than 2.5 and 5 billion Slater determinants, respectively. The calculations were performed on a Cray-T3D and a Cray-T3E, both machines having 128 processors. Performance and comparison between the two computers are reported and discussed. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 658–672, 1998  相似文献   

20.
Full configuration interaction (FCI ) calculations are reported for the closed-shell cyclic polyenes CNHN (N = 6, 10, 14, 18) in the Pariser–Parr–Pople (PPP ) approximation, as a function of the hopping parameter β. A wide range of values of β is considered, from a highly correlated situation, β = 0, to a very weakly correlated limit, β = ?10 eV. An estimate of the role of higher than two-body connected cluster components was done, through a partial (i.e., limited to two-body terms in the exponent) cluster analysis performed on the FCI wave function. The comparison with the approximate coupled pair theory that accounts for quadruply excited clusters [see P. Piecuch and J. Paldus, Theor. Chim. Acta 78 , 65 (1990)] shows a good agreement in the whole range of the hopping parameter, particularly when the contribution of connected triples excitations is also taken into account. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号