首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Taurochenodeoxycholic acid (TCDCA) is one of the main components of bile acids (BAs). TCDCA has been reported as a signaling molecule, exerting anti-inflammatory and immunomodulatory functions. However, it is not well known whether those effects are mediated by TGR5. This study aimed to elucidate the interaction between TCDCA and TGR5. To achieve this aim, first, the TGR5 eukaryotic vector was constructed. The expression level of TGR5 in 293T cells was determined by immunofluorescence, real-time quantitative PCR (RT-PCR, qPCR), and Western blot. The luciferase assay, fluorescence microscopy, and enzyme-linked immunosorbent assay (ELISA) were recruited to check the interaction of TCDCA with TGR5. TCDCA treatment in 293T cells resulted in TGR5 internalization coupled with a significant increase in cAMP luciferase expression. Our results demonstrated that TCDCA was able to bind to the TGR5 receptor and activate it. These results provide an excellent potential therapeutic target for TCDCA research. Moreover, these findings also provide theoretical evidence for further TCDCA research.  相似文献   

2.
GPR40 受体苯丙酸类激动剂三维定量构效关系研究   总被引:1,自引:0,他引:1  
苯丙酸类化合物是G蛋白偶联受体40(GPR40)潜在的生物活性药物。本文基于比较分子力场分析法(Co MFA)和比较分子相似性指数分析法(CoMSIA),分别建立了40个已知活性的GPR40受体苯丙酸类激动剂的三维定量构效关系(3D-QSAR)模型,研究该类激动剂与生物活性之间的关系。CoMFA和CoMSIA模型的交叉验证系数(q~2)分别为0. 527和0. 500,拟合验证系数(r~2)分别为0. 901和0. 860,两个3D-QSAR模型预测值与实验值基本一致,表明模型具有良好的可信度和预测能力。根据两个3D-QSAR模型提供的立体场、静电场、疏水场、氢键供体场和氢键受体场所提供的信息提出优化该类抑制剂结构的药物设计思路,为指导设计更高活性的GPR40激动剂以及GRR40新分子激动活性的预测提供理论依据。  相似文献   

3.
The nociceptin receptor(NOP) has been involved in multiple biological functions, including pain, anxiety, cough, substance abuse, cardiovascular control, and immunity. Thus, selective NOP agonists might have clinical potential for the treatment of related diseases. In the present work, three-dimensional quantitative structure-activity relationship(3D-QSAR) studies were performed on a series of 3-substituted N-benzhydryl-nortropane analogs as NOP agonists using comparative molecular field analysis(Co MFA) and comparative molecular similarity indices analysis(CoM SIA) techniques. The statistically significant models were obtained with 54 compounds in training set by ligand-based atom-by-atom matching alignment. The CoM FA model gave cross-validated coefficient(q2) value of 0.530 using 6 components, non-cross-validated(r2) value of 0.921 with estimated F value of 93.668, and standard error of estimate(SEE) of 0.185. The best Co MSIA model resulted in q2 = 0.592, r2 = 0.945, N = 10, SEE = 0.162, and F = 75.654, based on steric, electrostatic, hydrophobic and hydrogen bond acceptor fields. The predictive ability of the Co MFA and CoM SIA models was further validated using a test set of 18 molecules that were not included in the training set, which resulted in predictive correlation coefficients(r2pred) of 0.551 and 0.637, respectively. Moreover, the CoM FA and CoM SIA contour maps identified the features important for exhibiting potent binding affinities on NOP, and can thus serve as a useful guide for the design of potential NOP agonists.  相似文献   

4.
The binding affinity and relative maximal efficacy of human A3 adenosine receptor (AR) agonists were each subjected to ligand-based three-dimensional quantitative structure-activity relationship analysis. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) used as training sets a series of 91 structurally diverse adenosine analogues with modifications at the N6 and C2 positions of the adenine ring and at the 3', 4', and 5' positions of the ribose moiety. The CoMFA and CoMSIA models yielded significant cross-validated q2 values of 0.53 (r2 = 0.92) and 0.59 (r2 = 0.92), respectively, and were further validated by an external test set (25 adenosine derivatives), resulting in the best predictive r2 values of 0.84 and 0.70 in each model. Both the CoMFA and the CoMSIA maps for steric or hydrophobic, electrostatic, and hydrogen-bonding interactions well reflected the nature of the putative binding site previously obtained by molecular docking. A conformationally restricted bulky group at the N6 or C2 position of the adenine ring and a hydrophilic and/or H-bonding group at the 5' position were predicted to increase A3AR binding affinity. A small hydrophobic group at N6 promotes receptor activation. A hydrophilic and hydrogen-bonding moiety at the 5' position appears to contribute to the receptor activation process, associated with the conformational change of transmembrane domains 5, 6, and 7. The 3D-CoMFA/CoMSIA model correlates well with previous receptor-docking results, current data of A3AR agonists, and the successful conversion of the A3AR agonist into antagonists by substitution (at N6) or conformational constraint (at 5'-N-methyluronamide).  相似文献   

5.
6.
毒蕈碱受体激动剂的三维定量构效关系研究   总被引:1,自引:0,他引:1  
朱军  牛彦  吕雯  雷小平 《物理化学学报》2005,21(11):1259-1263
采用比较分子场分析法(CoMFA)研究了55个四氢吡啶类毒蕈碱受体激动剂的三维定量构效关系(3D-QSAR), 建立了具有较强预测能力的3D-QSAR模型. 所得模型的交叉验证相关系数(q2)为0.507, 常规相关系数(R2)为0.982 , 标准方差为0.218, 说明系列化合物分子周围立体场和静电场的分布与生物活性间存在良好的相关性. 模型不仅很好地预测了训练集和测试集化合物的活性, 而且为设计活性更高的受体激动剂提供了理论依据.  相似文献   

7.
8.
A structure–binding activity relationship for the intestinal bile acidtransporter has been developed using data from a series of bile acid analogsin a comparative molecular field analysis (CoMFA). The studied compoundsconsisted of a series of bile acid–peptide conjugates, withmodifications at the 24 position of the cholic acid sterol nucleus, andcompounds with slight modifications at the 3, 7, and 12 positions. For theCoMFA study, these compounds were divided into a training set and a test set,comprising 25 and 5 molecules, respectively. The best three-dimensionalquantitative structure–activity relationship model found rationalizesthe steric and electrostatic factors which modulate affinity to the bile acidcarrier with a cross-validated, conventional and predictive r2of 0.63, 0.96, and 0.69, respectively, indicating a good predictive model forcarrier affinity. Binding is facilitated by positioning an electronegativemoiety at the 24–27 position, and also by steric bulk at the end of theside chain. The model suggests substitutions at positions 3, 7, 12, and 24that could lead to new substrates with reasonable affinity for the carrier.  相似文献   

9.
3C-like蛋白酶是中东呼吸综合征冠状病毒(MERS-CoV)等其它冠状病毒的繁殖过程中极为重要的蛋白酶。它已成为人类在抗冠状病毒领域中的研究热点。本文基于计算生物学方法对与MERS-CoV同属的蝙蝠冠状病毒HKU4(HKU4-CoV)的43个肽类3C-like蛋白酶抑制剂分子,建立三维定量构效关系(3D-QSAR)模型。在基于配体叠合的基础上,发现比较分子相似性指数分析法(CoMSIA)中的四个场组合(位阻场、静电场、氢键供体场与氢键受体场)为最优的模型(Q2=0.522,Rncv2=0.996,Rpre2=0.904;Q2:交叉验证相关系数,Rncv2:非交叉验证相关系数,Rpre2:验证集分子的预测值相关系数),并借助该模型通过分子对接(docking)与分子动力学(MD)方法阐明了配受体结合作用。实验结果表明:(1)基于最优的CoMSIA模型基础上的三维等势图形象地说明了分子基团的位阻作用、静电作用、氢键供体与氢键受体作用对分子生物活性的影响;(2)分子对接研究结果显示了疏水性以及结晶水、氨基酸His166和Glu169在配体和受体结合过程中产生重要作用;(3)分子动力学模拟进一步验证了分子对接模型的可靠性,并发现了两个新的关键氨基酸Ser24与Gln192,它们与配体产生了两个较强的氢键。此外,根据这些结果,一些新的具有潜在抑制活性的肽类化合物作为3C-like蛋白酶抑制剂被获得。以上结果能够帮助深入了解3C-like蛋白酶与肽类抑制剂的作用机理,并且能够为今后的抗MERS-CoV药物设计提供有价值的参考。  相似文献   

10.
Formyl-peptide receptors (FPRs) belong to the family A of the G-protein coupled receptor superfamily and include three subtypes: FPR, FPR-like-1 and FPR-like-2. They have been involved in the control of␣many inflammatory processes promoting the recruitment and infiltration of leukocytes in regions of inflammation through the molecular recognition of chemotactic factors. A large number of structurally diverse chemotypes modulate the activity of FPRs. Newly identified antagonists include bile acids deoxycholic acid (DCA) and chenodeoxycholic acid (CDCA). The molecular recognition of these compounds at FPR receptor was computationally investigated using both ligand- and structure-based approaches. Our findings suggest that all antagonists bind at the first third of the seven helical bundles. A closer inspection of bile acid interaction reveals a number of unexploited anchor points in the binding site that may be used to aid the design of new potent and selective bile acids derivatives at FPR.  相似文献   

11.
Five different dopamine D3 receptors (D3DARs) models were created considering some suggested binding modes for D3DAR antagonists reported in earlier computational studies. Different hypotheses are justified because of the lack of experimental information about the putative site of interaction and are also due to the variability in scaffolds and size of D3DAR ligands. In this study 114 potent and selective D3DAR antagonists or partial agonists are used as key experimental information to discriminate the most reliable receptor model and to build a docking based 3D quantitative structure-activity relationship model able to indicate the ligand properties and the residues important for activity. The ability of this D3DAR model to discriminate the binding mode of different classes of ligands, showing a good quantitative correlation with their activity, encourages us to use it for screening novel lead compounds.  相似文献   

12.
Some biological properties of bile acids and their oxo derivatives have not been sufficiently investigated, although the interest in bile acids as signaling molecules is rising. The aim of this work was to evaluate physico‐chemical parametar b (slope) that represents the lipophilicity of the examined molecules and to investigate interactions of bile acids with carbonic anhydrase I, II, androgen receptor and CYP450s. Thirteen candidates were investigated using normal‐phase thin‐layer chromatography in two solvent systems. Retention parameters were used in further quantitative structure–activity relationship analysis and docking studies to predict interactions and binding affinities of examined molecules with enzymes and receptors. Prediction of activity on androgen receptor showed that compounds 3α ‐hydroxy‐12‐oxo‐5β ‐cholanoic and 3α ‐hydroxy‐7‐oxo‐5β ‐cholanoic acid have stronger antiandrogen activity than natural bile acids. The inhibitory potential for carbonic anhydrase I and II was tested and it was concluded that molecules 3α ‐hydroxy‐12‐oxo‐5β ‐cholanoic, 3α ‐hydroxy‐7‐oxo‐5β ‐cholanoic, 3,7,12‐trioxo‐5β ‐cholanoic acid and hyodeoxycholic acid show the best results. Substrate behavior for CYP3A4 was confirmed for all investigated compounds. Oxo derivatives of bile acids show stronger interactions with enzymes and receptors as classical bile acids and lower membranolytic activity compared with them. These significant observations could be valuable in consideration of oxo derivatives as building blocks in medicinal chemistry.  相似文献   

13.
3D-QSAR and molecular modeling of HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3-processing and 3-end joining steps in vitro.The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins. Maximum Common Substructure (MCS) based method was used to align the molecules and this was compared with other known methods of alignment. Two methods of 3D QSAR: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were analyzed in terms of their predictive abilities. CoMSIA produced significantly better results for all correlations. The results indicate a strong correlation between the inhibitory activity of these compounds and the steric and electrostatic fields around them. CoMSIA models with considerable internal as well as external predictive ability were obtained. A poor correlation obtained with hydrophobic field indicates that the binding of thiazolothiazepines to HIV-1 integrase is mainly enthalpic in nature. Further the most active compound of the series was docked into the active site using the crystal structure of integrase. The binding site was formed by the amino acid residues 64-67, 116, 148, 151-152, 155-156, and 159. The comparison of coefficient contour maps with the steric and electrostatic properties of the receptor shows high level of compatibility.  相似文献   

14.
15.
采用比较分子力场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA)对34个顺式新烟碱类衍生物的杀虫活性进行三维定量构效关系(3D-QSAR)研究.构建的CoMFA和CoMSIA模型的交叉验证系数rc2v分别为0.877和0.862,非交叉验证系数r2分别为0.970和0.961,表明建立的3D-QSAR模型具有较好的统计相关性和预测能力.一系列的研究结果指出:立体场、静电场和氢键受体场是描述顺式新烟碱类衍生物的化学结构与杀虫活性关系的重要参数;在咪唑啉环的3,4位不宜引入较大的取代基,提高咪唑啉环的电负性或增强硝基一个端氧的氢键受体特征有利于提高顺式新烟碱类衍生物的杀虫活性.  相似文献   

16.
17.
Eigenvalue analysis (EVA) was conducted on a series of potent agonists of peroxisome proliferator-activated receptor gamma (PPARgamma). Predictive EVA quantitative structure-activity relationship (QSAR) models were established using the SYBYL package, which had conventional r2 and cross-validated coefficient (q2) values up to 0.920 and 0.587 for the AM1 method and 0.863 and 0.586 for the PM3 method, respectively. These models were validated by a test set containing 18 compounds. The capability to predict by these two models for PPARgamma agonists, with the best predictive r2pred value of 0.614 for AM1 and 0.822 for PM3 methods, set a successful example for applying a similar approach in building QSAR models for PPARalpha and -delta that could potentially offer a new opportunity in the design of novel PPAR modulators.  相似文献   

18.
A set of 65 flexible peptidomimetic competitive inhibitors (52 in the training set and 13 in the test set) of protein tyrosine phosphatase 1B (PTP1B) has been used to compare the quality and predictive power of 3D quantitative structure-activity relationship (QSAR) comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models for the three most commonly used conformer-based alignments, namely, cocrystallized conformer-based alignment (CCBA), docked conformer-based alignment (DCBA), and global minima energy conformer-based alignment (GMCBA). These three conformers of 5-[(2S)-2-({(2S)-2-[(tert-butoxycarbonyl)amino]-3-phenylpropanoyl}amino)3-oxo-3-pentylamino)propyl]-2-(carboxymethoxy)benzoic acid (compound number 66) were obtained from the X-ray structure of its cocrystallized complex with PTP1B (PDB ID: 1JF7), its docking studies, and its global minima by simulated annealing. Among the 3D QSAR models developed using the above three alignments, the CCBA provided the optimal predictive CoMFA model for the training set with cross-validated r2 (q2)=0.708, non-cross-validated r2=0.902, standard error of estimate (s)=0.165, and F=202.553 and the optimal CoMSIA model with q2=0.440, r2=0.799, s=0.192, and F=117.782. These models also showed the best test set prediction for the 13 compounds with predictive r2 values of 0.706 and 0.683, respectively. Though the QSAR models derived using the other two alignments also produced statistically acceptable models in the order DCBA>GMCBA in terms of the values of q2, r2, and predictive r2, they were inferior to the corresponding models derived using CCBA. Thus, the order of preference for the alignment selection for 3D QSAR model development may be CCBA>DCBA>GMCBA, and the information obtained from the CoMFA and CoMSIA contour maps may be useful in designing specific PTP1B inhibitors.  相似文献   

19.
新型三唑类抗真菌化合物的三维定量构效关系研究   总被引:6,自引:0,他引:6  
采用比较分子力场分析法(CoMFA)和比较分子相似性指数分析法(CoMSIA), 系统研究了40个新型三唑类化合物抗真菌活性的三维定量构效关系. 在CoMFA研究中, 研究了两种药效构象对模型的影响, 并考察了网格点步长对统计结果的影响. 在CoMSIA研究中, 系统考察了各种分子场组合、网格点步长和衰减因子对模型统计结果的影响, 发现立体场、静电场、疏水场和氢键受体场的组合得到最佳模型. 所建立CoMFA和CoMSIA模型的交叉相关系数q2值分别为0.718和0.655, 并都具有较强的预测能力. CoMFA和CoMSIA模型的三维等值线图直观地解释了化合物的构效关系, 阐明了化合物结构中苯环上各位置取代基对抗真菌活性的影响, 为进一步结构优化提供了重要依据.  相似文献   

20.
The molecular alignments obtained from a previously reported pharmacophore model have been employed in a three-dimensional quantitative structure-activity relationship (3D QSAR) study, to obtain a more detailed insight into the structure-activity relationships for D(2) and D(4) receptor antagonists. The frequently applied CoMFA method and the related CoMSIA method were used. Statistically significant models have been derived with these two methods, based on a set of 32 structurally diverse D(2) and D(4) receptor antagonists. The CoMSIA and the CoMFA methods produced equally good models expressed in terms of q(2) values. The predictive power of the derived models were demonstrated to be high. Graphical interpretation of the results, provided by the CoMSIA method, brings to light important structural features of the compounds related to either low- or high-affinity D(2) or D(4) antagonism. The results of the 3D QSAR studies indicate that bulky N-substituents decrease D(2) binding, whereas D(4) binding is enhanced. Electrostatically favorable and unfavorable regions exclusive to D(2) receptor binding were identified. Likewise, certain hydrogen-bond acceptors can be used to lower D(2) affinity. These observations may be exploited for the design of novel dopamine D(4) selective antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号