首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《先进技术聚合物》2018,29(6):1531-1546
Owing to their abundance, high strength and stiffness, and low weight and biodegradability, nanocellulose (NC) is regarded as a promising candidate for the preparation of green composites. The high reinforcing effect assigned to the mechanical percolation phenomenon of NC is due to the stiff continuous networks of cellulosic nanoparticles linked via hydrogen bonding. Compared to nanocrystalline cellulose, NC fibers result in more significant improvement to the modulus, stiffness, and strength as aspect ratio NC fiber is higher compared to NC crystal. Indeed, in the case of biopolymer composites, the reinforcement effect of NC is attributed to the NC‐polymer interactions and the reinforcing effect occurring through effective stress transfer at the NC‐polymer interface. The NC‐reinforced composites tend to become more brittle as the concentration of the reinforcing particles increase up to the saturated level, due to the reduction in surface adhesion between filler and matrix. Due to its promising mechanical and structural stability, NC composites have been used widely in many industrial applications such as food packaging, electronic applications, and tissue engineering.  相似文献   

2.
This review provides a critical assessment of the use of cellulosic materials for reinforcement in polymer composites. The review focuses on structure–property interrelationships and the compatibilization of cellulosic materials for optimal performance of the resulting composite materials. Optimal material and physical properties are characterized on the basis of the reinforcement’s physical dimension and the nature of the interface between reinforcement and matrix. We explore how very different cellulosic materials—bacterial, microcrystalline, microfibrillated or nanocrystalline—can cause distinctly different reinforcment.  相似文献   

3.
An autoclave curing system has been developed and fabricated which is capable of curing both flat and contoured fibre reinforced polymer composite components. The system can operate at up to 20 bar pressure whilst achieving a 0·1-bar vacuum within the lay-up film bagging. Cure temperatures of up to 180°C were achieved using a stepwise temperature controlling system, which enabled the dwell temperature to be maintained within a ±1 °C tolerance.  相似文献   

4.
Both linear and nonlinear viscoelastic properties of ionic polymer composites reinforced by soy protein isolate (SPI) were studied. Viscoelastic properties were related to the aggregate structure of fillers. The aggregate structure of SPI is consisted of submicron size of globule protein particles that form an open aggregate structure. SPI and carbon black (CB) aggregates characterized by scanning electron microscope and particle size analyzer indicate that CB aggregates have a smaller primary particle and aggregate size than SPI aggregates, but the SPI composites have a slightly greater elastic modulus in the linear viscoelastic region than the CB composites. The composite containing 3–40 wt % of SPI has a transition in the shear elastic modulus between 6 and 8 vol % filler, indicating a percolation threshold. CB composites also showed a modulus transition at <6 vol %. The change of fractional free volume with filler concentration as estimated from WLF fit of frequency shift factor also supports the existence of a percolation threshold. Nonlinear viscoelastic properties of filler, matrix, and composites suggested that the filler‐immobilized rubber network generated a G′ maximum in the modulus‐strain curves and the SPI formed a stronger filler network than the CB in these composites. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3503–3518, 2005  相似文献   

5.
The natural fibers such as jute, coir, hemp, sisal etc. are randomly used as reinforcements for composite materials because of its various advantages such as low cost, low densities, low energy consumption over conventional fibers. In addition, they are renewable as well as biodegradable, and indeed wide varieties of fibers are locally available. In this study, glass–jute fiber reinforced polymer composite is fabricated, and the mechanical properties such as tensile, flexural and impact behavior are investigated. The materials selected for the studies were jute fiber and glass fiber as the reinforcement and epoxy resin as the matrix. The hand lay‐out technique was used to fabricate these composites. Fractured surface were comprehensively examined in scanning electron microscope (SEM) to determine the microscopic fracture mode. A numerical procedure based on the finite element method was then applied to evaluate the overall behavior of this composite using the experimentally applied load. Results showed that by incorporating the optimum amount of jute fibers, the overall strength of glass fiber reinforced composite can be increased and cost saving of more than 30% can be achieved. It can thus be inferred that jute fiber can be a very potential candidate in making of composites, especially for partial replacement of high‐cost glass fibers for low load bearing applications. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Kenaf fibers have been extensively explored from the past few decades in polymer composites industries owing to its extensive adaptations, excellent properties together with its comparable mechanical properties to traditional glass fibers polymer composites. The combustibility or lowered flame retardancy hampered the diverse applications of kenaf fibers reinforced polymer composites, as it affects the mechanical strength and stiffness of composites during fire. Current review article intended to be a comprehensive source of published literature involving the flame retardants (FRs), types and applications of FRs and the fabrication of kenaf fibers reinforced polymer composites. This article will also provide a perfect data on the recent development of the FR kenaf fibers polymer composites with different FRs and explored its structural and semi‐structural industrial application for performing further research in this topic. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

7.
Asyraf  M. R. M.  Rafidah  M.  Ebadi  S.  Azrina  A.  Razman  M. R. 《Cellulose (London, England)》2022,29(12):6493-6516
Cellulose - The significant reduction in petroleum resources and the growth of global environmental awareness on the use of conventional plastics are the motivating factors to accept natural fibres...  相似文献   

8.
This work deals with the effect that the use of glass fibres has on the morphology developed by a thermoplastic polymer modified epoxy. In particular, three surface modifications of the glass fibres were studied: calcinations desizing, activation with hydrochloric acid and coating with 3-aminopropyltriethoxy silane. As the epoxy polymer, a model system based on the full reaction of DGEBA and 2-methyl-1,5-diaminopentane was used. As the modifiers of the epoxy thermoset, two thermoplastic polymers were used: poly(methylmethacrylate) and polystyrene. The morphologies were examined either in the polymer bulk or at the interfaces by means of scanning electron microscopy and atomic force microscopy. After a thoroughly examination of the samples it was found that the thermoplastic polymers preferentially accumulate at the interfaces of these materials when activated and silanized glass fibres are used. These results might be attributed to a gradual phase separation process due to stoichiometric gradients which, on the other hand, seems to be conditioned by the nature of glass fibres surface.  相似文献   

9.
A hybrid nanopaper consisting of carbon nanofibre (CNF) and/or clay, polyhedral oligomeric silsesquioxane (POSS), ammonium polyphosphate (APP), has been fabricated through the papermaking process. The as-prepared hybrid nanopaper was then incorporated onto the surface of glass fibre (GF) reinforced polymer matrix composites through injection moulding. The morphologies of hybrid nanopapers with and without the polymer resin were characterized with scanning electron microscopy (SEM). The polymer resin penetrated the entire nanopaper under a high-pressure compressed air system. The thermal decomposition behaviour of hybrid nanopapers infused with resin was studied with real-time thermogravimetric analysis/Fourier transform infrared spectrometry (TGA/FTIR). The test results indicate that the addition of clay in the hybrid paper increased the char residues of the nanocomposites. The fire retardant performance of composite laminates incorporating hybrid nanopaper was evaluated by cone calorimeter testing using a radiant heat flux of 50 kW/m2. The cone test results indicated that the peak heat release rate (PHRR) decreased dramatically in the case of laminate composites incorporating CNF/clay/APP hybrid paper. However, the extent of reduction of PHRR of the composite laminates incorporated with CNF/POSS/APP hybrid paper was lower. The formation of compact char materials was observed on the surface of the residues and analyzed by SEM and X-ray photoelectron spectroscopy (XPS). The flame retardant mechanisms of hybrid nanopapers in composite laminates are discussed.  相似文献   

10.
Two different interlaminar fatigue testing methods have been compared by testing a carbon fiber reinforced epoxy (CF/EP) composite and a carbon fiber/multiwalled carbon nanotube reinforced epoxy (CF/MWCNT/EP) hybrid nanocomposite. The first, conventional fatigue testing method was the end-notched flexure (ENF) test, which was used as a reference. The second, novel technique was the fatigue interpretation of the double-notch shear (DNS) test. Both tests have been performed with static and cyclic loading to compare the evaluated properties of the different systems, the effect of transition from cyclic to fatigue loading and to demonstrate if the complex ENF test can be replaced by the simpler DNS test.The test results showed the slight beneficial effect of the nanoreinforcement in both static and cyclic load conditions, and the possibility to use the DNS test for fatigue testing of continuous fiber reinforced composites. The SEM micrographs taken of the fracture surfaces of the composites after the different interlaminar tests provide valuable data on the interlaminar failure phenomena of hybrid nanocomposites in both static and fatigue loading conditions.  相似文献   

11.
We investigated the face-stabilized Open-Hole Compression (OHC) test method for evaluating the effects of fiber waviness on the compression strength of continuous carbon fiber reinforced polymer composites. Temporal evaluations of the load-deformation response, acoustic emissions and optical microscopy are used to understand the failure modes and damage progression in the OHC specimen. The failure modes observed are structurally correlated to matrix failure and kink zone formation leading to fiber fracture. The results show how the resin pocket plays a more critical role than the layup in influencing the initiation of damage in the composite specimens.  相似文献   

12.
Pulsed thermography (PT) is a popular non-destructive testing (NDT) technique for defect detection in carbon fiber reinforced polymer (CFRP) composites. However, non-uniform backgrounds commonly observed in thermal images often reduce the detection power of PT. For background removal, mathematical morphology (MM), originally proposed for the analysis of geometrical structures, is adopted in this paper. After noise reduction, the non-uniform backgrounds in each image are conveniently constructed by MM. By subtracting the backgrounds from the original data, improved NDT is achieved. Experiment results show the effectiveness of the proposed method, where the defects in the CFRP specimen are more clearly identified.  相似文献   

13.
The effects of crystallinity, orientation, and short-fiber filler on the thermal diffusivity D and thermal conductivity K of poly (ether ether ketone) (PEEK) have been studied. Below the glass transition, D increases by less than 10% as the crystallinity increases from 0 to 0.3. For amorphous PEEK, there is an abrupt drop in D at the glass transition (Tg ? 420 K). The drop is less prominent for the 30% crystalline sample and occurs at 20 K higher. At a draw ratio of 2.5, the axial thermal conductivity is 2.3 times higher while the transverse thermal conductivity is 30% lower than that of the unoriented material. For an injection-molded bar of carbon fiber reinforced PEEK, the variation of D with position along the width or thickness direction is found to correlate well with the fiber orientation. By regarding the injection-molded bar as a multidirectional laminate comprising a large number of unidirectional plies, the thermal conductivities along the longitudinal and transverse direction are calculated and found to agree closely with the experimental data. © 1994 John Wiley & Sons, Inc.  相似文献   

14.
Water hyacinth and its mechanical pulps were used as lignocellulose to produce composites together with polystyrene or urea-formaldehyde resins. The bending strength of the composites increased with increasing concentration of the resin. The temperatures of the treatment of water hyacinth to obtain the pulps affect the strength and densities of the composites. This may be attributed to the behavior of lignin at temperatures higher than 135°C. The composites produced using urea-formaldehyde resins showed slight increase in bending strengths compared with those produced using polystyrene, which may be attributed to the ability of formaldehyde to make crosslinks with the free OH groups of cellulose and hemicellulose. Contrary to water hyacinth, the use of ground palm leaves together with 10% urea-formaldehyde resin produced composite with high density and low bending strength, while the ground water hyacinth failed. The pulp from palm leaves when processed into composites using 10% urea-formaldehyde resin show bending and densities affected by its preparation and by the amount of the composite mixture to be pressed. Hence the type of the substrate defined the type of the polymers or resin used to obtain composites with proper mechanical properties. The effect of the pressure used to produce composites from ground palm leaves or their pulp together with polystyrene was investigated. Linear relationships between the bending strength and pressure were obtained, the bending strength and densities increasing with increasing pressure. Thus, the increased pressures enhance mechanical properties of the composites.  相似文献   

15.
Several forms of cellulose nanomaterials, notably cellulose nanocrystals and cellulose nanofibrils, exhibit attractive properties and are potentially useful for a large number of industrial applications. These include the paper and cardboard industry, use as reinforcing filler in polymer nanocomposites, basis for low-density foams, additive in adhesives and paints, as well as a wide variety of filtration, electronic, food, hygiene, cosmetic, and medical products. This entry focuses on cellulose materials as filler in polymer nanocomposites. The ensuing mechanical properties obviously depend on the type of nanomaterial used, but the crucial point is the processing technique. The emphasis is on the melt processing of such nanocomposite materials that has not yet been properly resolved and remains a challenge.  相似文献   

16.
17.
Natural fiber is well‐known reinforcement filler in polymer‐matrix composites. Composite components like organic polymers and natural fibers are natural fire conductors as the natural fiber consists of cellulose, hemicellulose, and lignin, and hence are as highly flammable as wood. Natural fiber reinforced composite materials are progressively being used in a variety of applications where their fire response is a hazardous consideration, for example, in the automotive (transportation) and building‐construction industries. As a result, an awareness of their performance or response during a fire and the use of conventional fire retardants are of great importance, as they are subject to thermal decomposition when exposed to intensive high heat or fire sources. In this review paper, fire flammability is the main concern for cellulosic and non‐cellulosic fiber‐reinforced polymer composites, especially epoxy composites. This paper reviews the literature on the recent developments in flammability studies concerning polymers, epoxy polymers, cellulosic‐fibers, and non‐cellulosic fiber‐reinforced epoxy bio‐composites. The prime objective of this review is to expand the reach of “fire retardants for polymer materials and composites” to the science community, including physicists, chemists, and engineers in order to broaden the range of their applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Liquid metal polymer composites are an emerging class of functional materials with potentially transformative impacts in wearable electronics, soft robotics, and human-computer interactions. By employing different processing methods, room temperature liquid metal inclusions can be embedded in insulating polymers like elastomers to incorporate functional properties of metals while the matrix remains soft and stretchable. These solid–liquid composites offer an interesting, yet complex multifunctional material system. In this review, we present an exclusive overview of the synthesis methods, structural and functional properties, and applications of gallium-based liquid metal polymer composites. Common methods to control the size of liquid metal inclusions and their interaction in polymers are discussed. Moreover, the effect of liquid metal microstructures on the overall properties of the composites is summarized. We also highlight the new trends in terms of material composition, printing process, and novel applications of liquid metal polymer composites in intelligent systems.  相似文献   

19.
In this work, the technology of nano‐ and micro‐scale particle reinforcement concerning various polymeric fiber‐reinforced systems including polyamides (PAs), polyesters, polyurethanes (PUs), polypropylenes (pps), and high‐performance/temperature engineering polymers such as polyimide (PI), poly(ether ether ketone) (PEEK), polyarylacetylene (PAA), and poly p‐phenylene benzobisoxazole (PBO) is reviewed. When the diameters of polymer fiber materials are shrunk from micrometers to submicrons or nanometers, there appear several unique characteristics such as very large surface area to volume ratio (this ratio for a nanofiber can be as large as 103 times of that of a microfiber), flexibility in surface functionalities and superior mechanical performance (such as stiffness and tensile strength) compared to any other known form of the material. While nanoparticle reinforcement of fiber‐reinforced composites has been shown to be a possibility, much work remains to be performed in order to understand how nanoreinforcement results in dramatic changes in material properties. The understanding of these phenomena will facilitate their extension to the reinforcement of more complicated anisotropic structures and advanced polymeric composite systems. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Electroluminescent polymeric nanocomposite structures that are based on aromatic polyimides and cyanine dye nanosized crystals known as J aggregates and emit light in the IR region were prepared. For the first time, doped polymer systems were found to display IR luminescence whose spectrum had the form of a very narrow band that peaked at 1100 nm. Nanosized J-aggregate crystals in these new polymer materials act not only as effective acceptors of energy of excitonic states but also as active electron-hole transport sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号