首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We theoretically investigate the quasiparticle scattering rate Γ inside a vortex core in the existence of non-magnetic impurities distributed randomly in a superconductor. We show that the dependence of Γ on the magnetic field direction is sensitive to the sign of the pair potential. The behavior of Γ is quite different between an s-wave and a d-wave pair potential, where these are assumed to have the same amplitude anisotropy, but a sign change only for the d-wave one. It is suggested that measurements of the microwave surface impedance with changing applied-field directions would be used for the phase-sensitive identification of pairing symmetry.  相似文献   

3.
We study the bosonic Boltzmann-Nordheim kinetic equation, which describes the kinetic regime of weakly interacting bosons with s-wave scattering only. We consider a spatially homogeneous fluid with an isotropic momentum distribution. The issue of the dynamical formation of a Bose-Einstein condensate has been studied extensively. We supply here the completed equations of motion for the coupled system, the energy density distribution of the normal fluid and the density of the condensate. With this information the post-nucleation self-similar solution is investigated in more detail than before.  相似文献   

4.
We construct a theory for Josephson junction with multiple tunneling channels. We focus on two situations, i.e., a heterotic junction composed of two-gap-superconductor, insulator, and one-gap-superconductor, and a grain-boundary junction formed by two identical multi-gap superconductors. Then, we show that the magnetic field distribution of the Josephson vortex for ±s-wave superconductivity is much more enlarged than that for s-wave without sign change between the order parameters. We display such anomalous vortices and suggest how to evaluate the enlargement.  相似文献   

5.
We study the chaotic dynamics in the Bose-Einstein condensate (BEC) system of a double lattice. Chaotic space-time evolution is investigated for the particle number density in a BEC. By changing of the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical calculation shows that there is periodic orbit according to the s-wave scattering length only if the maximal Lyapunov exponent of the system is negative.  相似文献   

6.
We prove an index theorem for the existence of Majorana zero modes in a semiconducting thin film with a sizable spin-orbit coupling when it is adjacent to an s-wave superconductor. The theorem, which is analogous to the Jackiw-Rebbi index theorem for the zero modes in mass domain walls in one-dimensional Dirac theory, applies to vortices with odd flux-quantum in a semiconducting film in which s-wave superconductivity and a Zeeman splitting are induced by proximity effect. The momentum space construction of the zero-mode solution presented here is complementary to the approximate real space solution of the Bogoliubov-de Gennes equations at a vortex core (Sau et al., arXiv:0907.2239 [17]), proving the existence of non-degenerate zero-energy Majorana excitations and the resultant non-Abelian topological order in the semiconductor heterostructure. With increasing magnitude of the proximity-induced pairing potential, the non-Abelian superconducting state makes a topological quantum phase transition to an ordinary s-wave superconducting state which no topological order.  相似文献   

7.
We investigate pairing symmetry in an Abrikosov vortex and vortex lattice. It is shown that the Cooper pair wave function at the center of an Abrikosov vortex with vorticity m has a different parity with respect to frequency from that in the bulk if m is an odd number, while it has the same parity if m is an even number. As a result, in a conventional vortex with m = 1, the local density of states at the Fermi energy has a maximum (minimum) at the center of the vortex core in an even (odd)-frequency superconductor. In the vortex lattice of s-wave superconductor, we find that only odd-frequency pairing is present at the core centers, while at the midpoint of the vortex lines, only even-frequency pairing exists. Thus, the odd and even-frequency pairings also form the lattice in the vortex lattice state. We also propose a scanning tunneling microscope experiment using a superconducting tip to explore odd-frequency superconductivity.  相似文献   

8.
N¯ N (S-wave) annihilation into twos-wave mesons is treated as a two step process. The first stage involves a singleq¯ q 3P0-vertex to give a two meson state (ones-wave and onep-wave meson in a relatives-state). The second stage is a meson-meson scattering mechanism producing the final twos-wave mesons in a relativep-wave. The new feature in this work is to study the effect of using a pion wavefunction whose radial form is different to that of the others- andp-wave mesons. This modification over earlier work results in a better understanding of the experimental branching ratios.  相似文献   

9.
We study the groundstates of rotating atomic Bose gases with non-local interactions. We focus on the weak-interaction limit of a model involving s- and d-wave interactions. With increasing d-wave interaction, the mean-field groundstate undergoes a series of transitions between vortex lattices of different symmetries (triangular, square, “stripe” and “bubble” crystal phases). We discuss the stability of these phases to quantum fluctuations. Using exact diagonalization studies, we show that with increasing d-wave interaction, the incompressible Laughlin state at filling factor ν=1/2 is replaced by compressible stripe and bubble states.  相似文献   

10.
The nucleus12C is treated as a system composed of three alpha particles. Separable potentials are used for thes-wave andd-wave interactions between two alpha particles. Applying Faddeev's theory two 0+-states are found in the neighbourhood of the three-particle threshold.  相似文献   

11.
The spatial structure of the Bose-Einstein condensate (BEC) is investigated and spatially chaotic distributions of the condensates are revealed. By means of changing the s-wave scattering length with a Feshbach resonance, the chaotic behavior can be well controlled to enter into periodicity. Numerical simulation shows that there are different periodic orbits according to different s-wave scattering lengths only if the Lyapunov exponent of the system is negative.  相似文献   

12.
We derive the long wavelength effective action for the collective modes in systems of fermions interacting via a short-range s-wave attraction, featuring unequal chemical potentials for the two fermionic species (asymmetric systems). As a consequence of the attractive interaction, fermions form a condensate that spontaneously breaks the U(1) symmetry associated with total number conservation. Therefore at sufficiently small temperatures and asymmetries, the system is a superfluid. We reproduce previous results for the stability conditions of the system as a function of the four-fermion coupling and asymmetry. We obtain these results analyzing the coefficients of the low energy effective Lagrangian of the modes describing fluctuations in the magnitude (Higgs mode) and in the phase (Nambu-Goldstone, or Anderson-Bogoliubov, mode) of the difermion condensate. We find that for certain values of parameters, the mass of the Higgs mode decreases with increasing mismatch between the chemical potentials of the two populations, if we keep the scattering length and the gap parameter constant. Furthermore, we find that the energy cost for creating a position dependent fluctuation of the condensate is constant in the gapped region and increases in the gapless region. These two features may lead to experimentally detectable effects. As an example, we argue that if the superfluid is put in rotation, the square of the radius of the outer core of a vortex should sharply increase on increasing the asymmetry, when we pass through the relevant region in the gapless superfluid phase. Finally, by gauging the global U(1) symmetry, we relate the coefficients of the effective Lagrangian of the Nambu-Goldstone mode with the screening masses of the gauge field.  相似文献   

13.
Formation of a condensate of singlet electron-hole pairs in a two-dimensional metal lattice with the nesting of the Fermi contour is investigated. A numerical solution is obtained for the self-consistency equation for the insulating order parameter depending on the ratio of the coupling constants in the s- and d-wave channels of electron-hole pairing. Solutions with the pure orbital symmetry of s- and d-type are found, as well as solutions with the mixed s + d-symmetry. It is shown that in a wide range of values of the s- and d-wave coupling constants, the two-dimensional insulating order with the orbital symmetry $d_{x^2 - y^2 } $ can compete with pure ordered s- and d xy -states and mixed s + d-states. Time reversal symmetry breaking under an established real order with $d_{x^2 - y^2 } $ -wave symmetry may generate the imaginary component of the order parameter with symmetry d xy and cause a rise in topologically nontrivial d + id-wave ordering similar to the quantum Hall state in the absence of external magnetic field.  相似文献   

14.
We study the effect of local impurity and the neutron scattering spectrum based on the five-orbital model obtained by the first principle calculation for iron pnictides. We find that the interband impurity scattering is induced by the complex multiorbital structure. This fact means that the fully-gapped sign-reversing s-wave state, which is predicted by spin-fluctuation theories, is very fragile against impurities. The result suggests a reasonable possibility that the fully-gapped s-wave state without sign reversal (s++-wave) would be realized in dirty iron pnictides. We also find that broad peak structure observed in the neutron scattering measurements can be explained by the s++-wave state.  相似文献   

15.
Thermal conductivity κ xx(T) under a field is investigated in d x2 - y2-wave superconductors and isotropic s-wave superconductors by the linear response theory, using a microscopic wave function of the vortex lattice states. To study the origin of the different field dependence of κxx(T) between higher and lower temperature regions, we analyze the spatially-resolved thermal conductivity around a vortex at each temperature, which is related to the spectrum of the local density of states. We also discuss the electric conductivity in the same formulation for a comparison. Received 8 December 2001 and Received in final form 20 March 2002 Published online 6 June 2002  相似文献   

16.
T. Frederico 《Few-Body Systems》2014,55(8-10):651-657
The theoretical few-body aspects associated with universal properties of weakly-bound neutron-rich light nuclei close to the drip line will be reviewed briefly, considering recent theoretical and experimental works. We will address low-energy properties of the one- and two-neutron halo of light exotic nuclei, which are dominated by s-wave short-range two-body interactions. In view of recent experiments with light neutron-rich nuclei, we will discuss properties of exotic nuclei as 11Li, 14Be, 20C and 22C, within a three-bodyneutron–neutron-core model. Particular emphasis will be given to model independent properties associated to halo neutrons, which obey universal scaling laws. We discuss how the scaling laws for the s-wave observables of two-neutron halo will be identified with limit-cycles and Thomas–Efimov effect in a zero-range three-body model.  相似文献   

17.
We study the current-induced bottom baryon to charm baryon transitions in the Heavy Quark Symmetry limit as mq → ∞. Our discussion involves s-wave to s-wave as well as s-wave to p-wave transitions. Using a constituent quark model picture for the light diquark system with an underlying SU (2Nf) ? O(3) symmetry and the heavy quark symmetry we arrive at a number of new predictions for the reduced form factors that describe these transitions.  相似文献   

18.
We investigate the pairing symmetry of layered BiS2 compomlds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We lind that the extended .s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level :r = 0.5. which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin orbital coupling because it is mainly determined by the structure of Fermi surfaces, Moreover. the extended s-wave pafiring can be distinguished from conventional swave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.  相似文献   

19.
We study the current-induced bottom baryon to charm baryon transitions in the Heavy Quark Symmetry limit asm q→∞. Our discussion involvess-wave tos-wave as well ass-wave top-wave transitions. Using a constituent quark model picture for the light diquark system with an underlyingSU(2N f)?O(3) symmetry and the heavy quark symmetry we arrive at a number of new predictions for the reduced form factors that describe these transitions.  相似文献   

20.
Ever since the pioneering work of Bardeen, Cooper and Schrieffer in the 1950s, exploring novel pairing mechanisms for fermion superfluids has become one of the central tasks in modern physics. Here, we investigate a new type of fermion superfluid with hybridized s- and p-wave pairings in an ultracold spin-1/2 Fermi gas. Its occurrence is facilitated by the co-existence of comparable s- and p-wave interactions, which is realizable in a two-component 40K Fermi gas with close-by s- and p-wave Feshbach resonances. The hybridized superfluid state is stable over a considerable parameter region on the phase diagram, and can lead to intriguing patterns of spin densities and pairing fields in momentum space. In particular, it can induce a phase-locked p-wave pairing in the fermion species that has no p-wave interactions. The hybridized nature of this novel superfluid can also be confirmed by measuring the s- and p-wave contacts, which can be extracted from the high-momentum tail of the momentum distribution of each spin component. These results enrich our knowledge of pairing superfluidity in Fermi systems, and open the avenue for achieving novel fermion superfluids with multiple partial-wave scatterings in cold atomic gases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号