首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cooled positive barium ions, proposed for new frequency standards, cease scattering cooling radiation for anomalously long periods in the presence of carbon dioxide or water. The probable mechanism is the attraction of a gas molecule to the ion as a result of the dipole induced in the molecule by the ion, followed by the formation of a weak chemical bond between the two. The mechanism seems applicable to any ion.  相似文献   

2.
A method for effectively removing background photons and improving the signal-to-background ratio in detection of fluorescence from a single cooled ion is described. In the method, an additional spatial filter placed at an off-focal position is used to remove scattered photons from trap-electrode surfaces. A signal-to-background ratio of more than 200 is obtained. By using this setup, a resolved carrier and motional sidebands on the 42S1/2–32D5/2 electric quadrupole transition in 40 Ca+ are observed.  相似文献   

3.
+ ions. The Ca+ ions are trapped in a miniature rf Paul trap and irradiated by light from a frequency-doubled diode laser at 397 nm and by light from a diode laser at 866 nm. We are able to cool a single ion and observe its fluorescence continuously with the laser diode locked to the external frequency-doubling cavity. Quantum jumps in the fluorescence light of a single ion and of a small cloud of five ions have been induced by driving the “clock” transition at 729 nm. We were able to resolve the influence of the micromotion on the excitation spectrum of the small ion cloud. Received: 10 July 1997/Revised version: 17 November 1997  相似文献   

4.
1/2 -D5/2 electric-quadrupole-allowed transitions of a laser-cooled Ca+ ion in a small rf trap. The electron shelving method was used to measure the absorption spectrum of the electric-quadrupole-allowed transitions, and the motional sidebands due to the secular motion of the ion in the harmonic potential well of the rf trap were completely resolved. The effective temperature of the ion, estimated by comparing the observed sideband intensities with the theoretical ones, was less than 4.4 mK. This result is in good agreement with that obtained from the analysis of the linewidth measurement. Received: 18 March 1998  相似文献   

5.
The ratio of the mean kinetic energy and the spatial width of ion clouds in Paul traps has been measured. The result is compared with predictions of various models that describe ion cloud dynamics in Paul traps.  相似文献   

6.
A single trapped and cooled Ba+ ion is irradiated by resonant visible light (493, 650 nm) alternating with light at 1.76 µm which may excite the ion to its2 D 5/2 metastable state. The (absence of) visible resonance scattering probes the excitation, tuning spectra of which show vibrational sidebands that characterize the ion's temperature. Observed values as low as 120 µK, one-eighth the Doppler limit, are ascribed to electronic Raman cooling by the visible light. Tuning spectra of the events of stimulated deexcitation indicate ion heating by the IR interaction. The results demonstrate the feasibility of vibrational spectrometry on a single particle that oscillates in a potential well, forming a quasi-molecule.  相似文献   

7.
Be+ ions stored in a Penning trap were cooled by a laser beam perpendicular to the magnetic field. The cooled ions are strongly coupled and phase transitions of up to 100 ions were observed. In experiments with only a few ions stored in the trap, a stepwise decrease in fluorescence intensity was observed. All steps are of the same size and so every step is attributed to a single ion. The discrete changes in fluorescence occurred more frequently when the background pressure was increased, caused by collisions between stored ions and background neutral molecules.  相似文献   

8.
Rare calcium isotope ions, 42Ca+ and 44Ca+, were efficiently separated from a laser-cooled ionic cloud in a linear Paul trap which was loaded from an atomic source of a natural isotope mixture of calcium, in spite of their negligibly small abundances (0.647% and 2.086%, respectively) compared with that of 40Ca (96.94%). Selective heating and cooling that arise from the isotope shifts were mainly used for the elimination of the isotopes; selective heating and cooling enable flexible separation when combined with other mechanisms such as the inherent mass selectivity of RF traps. Received: 7 July 2000 / Published online: 10 January 2001  相似文献   

9.
A single ^40Ca^+ ion is loaded in a miniature Paul trap and the probability of directly loading a single ion is above 50%. The signal-to-noise ratio and the storage time for a single ion have been improved by minimizing the ion micromotion and locking a 397nm cooling laser to a Fabry-Perot interferometer and optogalvanic signal. From the fluorescence spectrum, the ion temperature is estimated to be about 5mK.  相似文献   

10.
We present an investigation of sub-Doppler effects in a cesium magneto-optical trap. First, a simple one-dimensional theoretical model of the trap is developed for aJ g = 1 J e = 2 transition. This model predicts the size of the trapped atom cloud and temperature as a function of laser intensity and detuning. In the limit of small magnetic field gradients, the trap temperature is found to be equal to the molasses temperature and a minimum size for the trap is calculated. We then describe several experiments performed in a three-dimensional cesium trap to measure the trap parameters, spring constant, friction coefficient, temperature and density. Whilst the temperature of the trapped atoms is found to be equal to the molasses temperature, in agreement with theory, the trap spring constant is found to be two orders of magnitude smaller than the one-dimensional prediction, a value close to that predicted by Doppler models. The maximum density is found to be on the order of 1012 atoms/cm3 or one atom per optical wavelength on average. When the number of trapped atoms becomes large, the temperature begins to increase dramatically. This excess temperature depends in a very simple way on the atom number, laser intensity and detuning, suggesting that its origin lies in multiple photon scattering within the trap.  相似文献   

11.
We theoretically investigated the mass dependence of the sympathetic cooling rate of gas-phase ions trapped in a linear radio-frequency-quadrupole ion trap. Using an a priori molecular dynamical calculation, tracing numerically with Newtonian equations of motion, we found that ions with a mass greater than 0.54±0.04 times that of the laser-cooled ions are sympathetically cooled; otherwise, they are heated. To understand the mass dependence obtained using the molecular-dynamical calculation, we made a heat-exchange model of sympathetic cooling, which shows that the factor of 0.54±0.04 is a consequence of absence of micro-motion along the axis of the linear ion trap. Received: 10 December 2001 / Revised version: 28 January 2002 / Published online: 14 March 2002  相似文献   

12.
As it is known [1] an intense laser field can induce atom-atom interaction according to a dipole-dipole R –3 law. Such an interaction depends on the angle between light polarization and interatomic vector-position R. This angular dependence may produce an anisotropy in the spatial density distribution of the confined sample of cold atoms. We develop the main relations and apply them to the case of an atomic cloud of cold trapped neutral atoms with the density higher than or of the order of –3, where is the wavelength of light. The results presented here show the effect of such an interaction in a density regime of high experimental interest.  相似文献   

13.
Be+ ions trapped in a Penning trap are laser-cooled to about 10 mK. The excitation spectra of ion clouds containing about 500 ions are obtained by scanning the frequency of the cooling laser and discontinuities in these spectra are observed because of phase transitions. When the cooled ions are heated electrically by applying an rf voltage, no phase transition occurs and the spectra become continuous. Two-dimensional measurement of the ion clouds is carried out and the abrupt change in the shape of the ion cloud due to the phase transition is observed. When many ions are trapped and cooled, the phase transition occurs partially and a transient state where two states are mixed can be observed. The static properties of the ions are also measured by using an additional probe laser and the results of experimental measurements are compared with theoretical predictions.  相似文献   

14.
Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second-order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this paper the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion’s velocity. Excess micromotion is controlled by monitoring the dark-resonance contrast with varying laser-beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically.  相似文献   

15.
We demonstrate a pulse-probe method for measuring the ion-cloud rotation frequency in a Penning trap. We show that it is useful over a range of parameters not accessible to the photon correlation method of Dholakia et al. [1]. In particular, the pulse-probe method works for larger clouds than the photon-correlation method. We show that the pulse-probe method measures the space-charge-shifted frequency and gives us the optical pumping times within clouds. Furthermore, we show that, for Mg+ ions, it is capable of measuring much higher degrees of space-charge shift than the photon-correlation method. Improvements to the method may enable its use in measuring diffusion rates for ions in clouds.  相似文献   

16.
Rb atomic absorption line reference for single Sr+ laser cooling systems   总被引:2,自引:0,他引:2  
85 Rb, 5s2S1/2(F”=2)→6p2P1/2(F’=2,3) absorption resonance with the 88Sr+, 5s2S1/2→5p2P1/2 transition is exploited to provide a simple, effective frequency reference for a laser cooling/fluorescence excitation source applied to single Sr+ ions. A modulation-free frequency stabilization system has been designed which uses the differential signal from two frequency-displaced beams traversing a Rb cell and which probe the Doppler-broadened Rb S–P lineshape at microwatt power levels. The method is applied to frequency lock a 422-nm frequency-doubled diode laser system that is used for excitation of a single 88Sr+ ion. Stable, long-term laser cooling and fluorescence are achieved using the frequency-stabilized 422-nm source resulting in observed ion confinement times without adjustment of over 8 h, together with an improvement in single-ion loading efficiency. Received: 12 February 1998  相似文献   

17.
Laser cooling in a CO2-laser optical lattice   总被引:1,自引:0,他引:1  
Received: 19 June 1998  相似文献   

18.
A detailed account of various experimental techniques developed during the study on the decay rate coefficient of laser trapped 7Li atoms are presented. The frequency of a dye laser is stabilized using a simple sealed-off cell specially designed for Li vapor. The accurate number of trapped atoms are obtained by measuring the fluorescence intensity and the population ratio between the ground and the excited states by absorption coefficient measurement. The absolute value of the collisional lossrate coefficient of trapped 7Li atoms is determined by analyzing the temporal change of the fluorescence intensity when the supply of the Li beam is turned off.  相似文献   

19.
Resonance ionization mass spectroscopy (RIMS) and pulsed-laser induced desorption (PLID) have been combined for ultrasensitive detection and spectroscopy of very small samples of refractive elements. The method has been tested and applied to laser spectroscopy of 5×109 atoms (1.5 pg) of195Au (T 1/2= 183d) implanted at the ISOLDE online mass separator with 60 keV into graphite. A pulsed thermal atomic beam was formed by laser desorption with a 10 ns NdYag laser pulse. Subsequently the atoms were photoionized in a three-colour, three-step resonant excitation to an autoionizing state. The selectivity was enhanced by a time-of-flight measurement of the photo ions. In resonance, one ion was detected per 105 atoms implanted resulting in a gain in detection efficiency by three orders of magnitude in comparison to the use of a continuous atomic beam. In the course of the experiments several unknown autoionizing states were found, and the lifetime of the 6d 2 D 3/2 state of gold was determined to be=10.7(6) ns.  相似文献   

20.
The ion trap quantum information processor   总被引:8,自引:0,他引:8  
Received: 16 October 1996/Revised version: 2 April 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号