首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The traditional medicinal properties of Carpobrotus edulis are well recognized, particularly in Tunisia where it is used for wound healing. Thus, in this study, biochemical and molecular properties of its leaves’ bioactive aqueous-acetone extract were investigated. The total phenolic content (TPC) of the extract was estimated to be 184 ± 5 mg/100 g of fresh matter (FM). The qualitative and quantitative polyphenolic profile was determined by ultra performance liquid chromatography with diode array detection (UPLC-DAD) and showed that chlorogenic acid was the major compound (43.7%). The extract exhibits potent antioxidant capacities with IC50 = 56.19 and 58.91 μg/ml, as accessed via the anionic DPPH and cationic ABTS radical scavenging assays, respectively. The extract has high antibacterial properties, especially against the Gram+ Staphylococcus aureus and Bacillus cereus strains. To investigate the extract effect on regeneration, the flatworm Dugesia sicula Lepori, 1948, was used as a model. The macroscopic analysis of planarian cultures in ordinary medium containing phenolic extract at non-toxic concentrations illustrated that the extract caused morphological changes. Additionally, the molecular study through the fluorescence-activated cell sorting (FACS) technique showed that C. edulis polyphenols can harm the stem cells’ development. These results emphasize the ecotoxicological impact of phenolic rejections in the environment on flatworms’ physiology.  相似文献   

2.
Oxidative stress and the resulting damage to cellular and extracellular components has been observed in a variety of degenerative processes, including degenerative joint disorders, where high-molar-mass hyaluronan (HA) is often found to be massively degraded. The present study sought to test the hypothesis that dithiols are more effective in protecting biomacromolecules from free-radicalmediated damage than monothiols. The materials/thiols tested included bucillamine (BUC), dithioerythritol (DTE), dithiothreitol (DTT) and glutathione (GSH), as a reference, for their effectiveness in protecting HA from oxidative degradation induced in vitro. Since HA degradation results in a decrease in its dynamic viscosity, rotational viscometry was applied to follow HA oxidative degradation. The free-radical-scavenging activities of the thiols tested were determined by 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (DPPH) assays. It was found that all the dithiols in the concentration range tested protected HA from the oxidative degradation. On the other hand, monothiol GSH exerted protection only at high concentrations (10 μmol L?1 and 100 μmol L?1) and 1 μmol L?1 of GSH even exhibited a prodegradative effect. The ABTS assay revealed free-radical scavenging activities in the following order: BUC, DTT, DTE, GSH, and that of the DPPH assay: BUC, DTE, DTT, GSH. In conclusion, it was demonstrated that dithiols may be more effective than monothiols in affording biomacromolecule protection from oxidative degradation.  相似文献   

3.
Phyllanthus amarus is known as a healing herb which has traditionally been used in the treatment of various diseases such as hepatitis, diabetes and cancer. The extraction parameters have great effects on the extraction efficiency of bioactive compounds and pharmacological activity of the extracts. This study sought to optimise the microwave-assisted extraction parameters for phenolic compounds-enriched extracts and antioxidant capacity from P. amarus using response surface methodology (RSM). The results showed that the optimal microwave-assisted extraction parameters were an extraction time of 30 min, an irradiation time of 14 s min?1 and a ratio of solvent to sample of 150 mL g?1. The total phenolic content, phenolic extraction efficiency, saponin content, 2,2’-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging capacity, 2,2-diphenyl-1-picryl-hydrazil (DPPH) radical scavenging capacity and ferric reducing antioxidant power of the P. amarus achieved under these optimal parameters were 87.3 mg of gallic acid equivalents (GAE) per gram of dried sample, 69.7 %, 134.9 mg of escin equivalents (EE) per gram of dried sample, 997.8, 604.7 and 437.3 all in mg of trolox equivalents (TE) per gram of dried sample, respectively, which were not significantly different from the predicted values (86.9 mg of GAE per gram of dried sample, 67.3 %, 123.5 mg of EE per gram of dried sample, 1013.3 mg of TE per gram of dried sample, 530.6 mg of TE per gram of dried sample and 423.5 mg of TE per gram of dried sample, respectively). Accordingly, the optimal microwave-assisted extraction parameters of 30 min, 14 s min?1 and 150 mL g?1 are recommended for the extraction of enriched phenolics from P. amarus for potential application in the nutraceutical and pharmaceutical industries.  相似文献   

4.
The oxidative stability of soybean oil added of extracts from by-products generated in the pulp processing of mango (CM), Barbados cherry (CB) and guava (CG), as well as the combination of these extracts with the antioxidants butylated hydroxytoluene (BHT) and tertiary butylhydroquinone (TBHQ), were evaluated by pressurized differential scanning calorimetry (P-DSC) and Rancimat methods. Among the extracts, that obtained from CB showed the highest content of total extractible phenolic. Soybean oil added of CM extract showed greater (p < 0.05) oxidative stability in Rancimat analysis, while by P-DSC method CB was the extract more effective (p < 0.05) to protect soybean oil. Soybean oil added of CB extract showed higher (p < 0.05) OIT values compared to those added of CM, CG and synthetic antioxidants BHT and TBHQ. The combination of CB, CM and CG extracts with TBHQ showed synergistic effects, while CM and CB combined with BHT showed antagonistic effect on oxidative stability in soybean oil. The OIT results obtained from analysis by P-DSC and the OSI results obtained by Rancimat showed Pearson moderate correlation (r = 0.42). These results suggest the CB, CM and CG extracts as good source of antioxidant compounds with potential for combined application with synthetic antioxidants to prevent oxidation in soybean oil.  相似文献   

5.
New N-(pyridin-3-ylmethyl)-2-aminothiazolines containing various substituents at the 5 position of the thiazoline ring and the 4-tert-butylbenzyl, 4-isopropylbenzyl, or 4-fluorobenzyl moiety at the nitrogen atom of the amino group were synthesized. The inhibitory activity of the synthesized compounds against human erythrocyte acetylcholinesterase (AChE, EC 3.1.1.7), equine serum butyrylcholinesterase (BChE, EC 3.1.1.8), and porcine liver carboxylesterase (CaE, EC 3.1.1.1) was evaluated and their antioxidant properties were studied by ABTS assay. N-(Pyridin-3-ylmethyl)-2-aminothiazolines proveded to be very weak AChE inhibitors, while their inhibitory activity against BChE and CaE was structure-dependent. 2-Aminothiazolines containing the 4-tert-butylbenzyl moiety are more efficient BChE inhibitors compared to the derivatives containing the 4-isopropylbenzyl or 4-fluorobenzyl substituent. An analysis of the dependence of the esterase profile of N-(pyridin-3-ylmethyl)-2-aminothiazolines on the structure of the substituent at the 5 position of the thiazoline ring of these compounds demonstrated that the derivatives containing the iodomethyl substituent possess the highest anti-BChE activity, the compounds with R2 = H and R3 = CH2I have the optimal esterase profile. Regardless of the structure of the substituents in the benzyl moiety, all N-(pyridin-3-ylmethyl)-2-aminothiazolines containing the iodomethyl substituent at the 5 position of the thiazoline ring exhibited high radical scavenging activity comparable with that of the standard antioxidant Trolox. N-(Pyridin-3-ylmethyl)-2-aminothiazolines were shown to be a new promising class of compounds for the design of multifunctional agents for the treatment of neurodegenerative diseases.  相似文献   

6.
The on-line combination of comprehensive two-dimensional liquid chromatography (LC?×?LC) with the 2,2′-azino-bis(3-ethylbenzothiazoline)-6 sulphonic acid (ABTS) radical scavenging assay was investigated as a powerful method to determine the free radical scavenging activities of individual phenolics in natural products. The combination of hydrophilic interaction chromatography (HILIC) separation according to polarity and reversed-phase liquid chromatography (RP-LC) separation according to hydrophobicity is shown to provide much higher resolving power than one-dimensional separations, which, combined with on-line ABTS detection, allows the detailed characterisation of antioxidants in complex samples. Careful optimisation of the ABTS reaction conditions was required to maintain the chromatographic separation in the antioxidant detection process. Both on-line and off-line HILIC?×?RP-LC–ABTS methods were developed, with the former offering higher throughput and the latter higher resolution. Even for the fast analyses used in the second dimension of on-line HILIC?×?RP-LC, good performance for the ABTS assay was obtained. The combination of LC?×?LC separation with an on-line radical scavenging assay increases the likelihood of identifying individual radical scavenging species compared to conventional LC–ABTS assays. The applicability of the approach was demonstrated for cocoa, red grape seed and green tea phenolics.
Figure
On-line HILIC×RP-LC–ABTS analysis of cocoa proanthocyanidins  相似文献   

7.
A stability-indicating UPLC method was developed for quantitative determination of 9-desmethyl-α-dihydrotetrabenazine (9-DM-α-DTBZ), the precursor for preparing a widely used vesicular monoamine transporter 2 imaging agent 11C-α-DTBZ. Compound 9-DM-α-DTBZ was subjected to various stress conditions consisting of acidic, alkaline, oxidative, thermal and photolytic forced degradation. The decomposition of 9-DM-α-DTBZ was observed under oxidative condition, whereas no obvious degradation was shown under the other stress conditions. For chromatographic separation of 9-DM-α-DTBZ and its degradation products, an Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) and a mobile phase of 20:80 (v/v) methanol/ammonium acetate buffer (pH 4.5, 10 mM) were used. Quantitative determination of 9-DM-α-DTBZ was performed using a PDA detector at a flow rate of 0.30 mL min?1. UPLC–MS analysis was further utilized to characterize the two degradation products. The proposed method was fully validated as per USP guidelines with respect to linearity, accuracy, precision, robustness, limit of detection (LOD) and limit of quantification (LOQ). The linear regression analysis showed a good linear relationship (r 2  = 0.9995) in the concentration range of 0.001–1.00 mg mL?1 (n = 6). The assay method was found to have good precision (1.14–1.35% RSD) and recovery (98.91–101.23%). Additionally, the LOD and LOQ of 9-DM-α-DTBZ were 0.30 and 1.00 μg mL?1, respectively. These results indicated that the present method could be used to evaluate the quality of regular production samples and also used in stability assays.  相似文献   

8.
Metabolic stability, mutagenicity, antimutagenicity, and the ability to scavenge free radicals of four novel 8-methoxy-purine-2,6-dione derivatives (compounds 1–4) demonstrating analgesic and anti-inflammatory properties were determined. Metabolic stability was evaluated in Cunninghamella and microsomal models, mutagenic and antimutagenic properties were assessed using the Ames and the Vibrio harveyi tests, and free radical scavenging activity was evaluated with 2,2-diphenyl-1-picrylhydrazyl radical scavenging assay. In the Cunninghamella model, compound 2 did not undergo any biotransformation; whereas 3 and 4 showed less metabolic stability: 1–9 and 53–88% of the parental compound, respectively, underwent biotransformation reactions in different Cunninghamella strains. The metabolites detected after the biotransformation of 3 and 4 were aromatic hydroxylation and N-dealkylation products. On the other hand, the N-dealkylation product was the only metabolite formed in microsome assay. Additionally, these derivatives do not possess mutagenic potential in microbiological models (Vibrio harveyi and Salmonella typhimurium) considered. Moreover, all compounds showed a strong chemopreventive activity in the modified Vibrio harveyi strains BB7X and BB7M. However, radical scavenging activity was not the mechanism which explained the observed chemopreventive activity.  相似文献   

9.
We selected Camellia tenuifolia (Hayata) seed oil to compare the effects of mushroom extract and vitamin E on its stabilization properties. Camellia tenuifolia was selected for its higher oil content, but its proportions of unsaturated fatty acids and natural antioxidants as well as its oxidation stability are lower than those of Camellia oleifera oil. Our aim was to improve the oxidation stability, thermal stability, and photodegradation of C. tenuifolia seed oil and then compare the advantages of mixing traditional antioxidant (vitamin E) and mushroom natural antioxidant components (mushroom extract) in the oil. The focus was on the analysis of the effects of Pleurotus citrinopileatus (Singer) extract and vitamin E on the stabilization properties of C. tenuifolia seed oil, which involved some degradation research, such as evaluating the thermal, oxidation, and antioxidant effects as well as the irradiative (pulsed light) stability of the original oil and oil mixed with additives for comparing the differences by differential scanning calorimetry tests and isothermal microcalorimeter (TAM Air) analyses. We determined the effects of stabilization additives vitamin E and various PC extract doses by using pulsed light irradiation (0, 30, and 60 pulses) and found that the 3 mass% PC extract had the best antiphotodegradation characteristics, and the 0.1 mass% vitamin E indicated the outstanding oxidation stability for among all of the additives in this study. Overall, we obtained the following suitable conditions to stabilize camellia oil: addition of vitamin E, addition of 3 mass% PC extract, and a nitrogen atmosphere.  相似文献   

10.
In this study, silver nanoparticles (AgNPs) were biosynthesized using Stachys lavandulifolia and Lathyrus sp. The first sign of the reduction of silver ions to AgNPs was the change in color of S. lavandulifolia and Lathyrus sp. extracts changed into dark brown and auburn after treating with silver nitrate, respectively. The UV–Vis spectroscopy of reaction mixture (extract+silver nitrate) produced by S. lavandulifolia and Lathyrus sp. showed the strong adsorption peaks at ?440 and 420 nm, respectively. The transmission electron microscope images showed the synthesis of AgNPs using S. lavandulifolia and Lathyrus sp. with an average size of 7 and 11 nm, respectively. The result of X-ray diffraction pattern showed four diffraction peaks at 38°, 44°, 64°, and 77° for both types of biosynthesized AgNPs. Fourier transform infrared spectroscopy showed the possible role of involved proteins and polyhydroxyl functional groups in the synthesis process of AgNPs. Inductively coupled plasma analysis determined the conversion rate (percentage) of silver ions to silver nanoparticles in reaction mixtures of S. lavandulifolia and Lathyrus sp. 99.73 and 99.67 %, respectively. In addition, antifungal effect of AgNPs, synthesized by both extracts, was studied separately on mycelial growth of Dothiorella sarmentorum, in a completely randomized design on potato dextrose agar (PDA) medium. The inhibition rate of mycelial growth was strongly depended on the density of AgNPs and it strongly increased with increasing the density of AgNPs in the PDA medium. AgNPs more than 90 % of them inhibited from the mycelia growth of the fungus at the concentration of 40 µg/mL and higher.  相似文献   

11.
Eucalyptus species have found their place in traditional medicine and pharmacological research and they have also been shown to possess a large number of phenolic compounds and antioxidants. The present study sought to implement conventional extraction to yield maximal total phenolic content (TPC), total flavonoid content (TFC), proanthocyanidins, antioxidants, and saponins from E. robusta using different solvents. The most suitable extraction solvent was further employed for extracting phytochemicals from E. saligna, E. microcorys, and E. globulus to select the Eucalyptus species with the greatest bioactive compound content. The results emphasised the efficiency of water in extracting TPC ((150.60 ± 2.47) mg of gallic acid equivalents per g), TFC ((38.83 ± 0.23) mg of rutin equivalents per g), proanthocyanidins ((5.14 ± 0.77) mg of catechin equivalents per g), and antioxidants ABTS ((525.67 ± 1.99) mg of trolox equivalents (TE) per g), DPPH ((378.61 ± 4.72) mg of TE per g); CUPRAC ((607.43 ± 6.69) mg of TE per g) from E. robusta. Moreover, the aqueous extract of E. robusta had the highest TPC, TFC and antioxidant values among the other Eucalyptus species tested. These findings highlighted the efficiency of conventional extraction in extracting natural bioactive compounds from Eucalyptus species for pharmaceutical and nutraceutical applications.  相似文献   

12.
There exists a complex and multifactorial relationship between diabetes and cardiovascular disease. Hyperglycemia is an important factor imposing damage (glucose toxicity) on cardiac cell leading to diabetic cardiomyopathy. There are substantial clinical evidences on the adverse effects of conventional therapies in the prevention/treatment of diabetic cardiovascular complications. Currently, green-synthesized nanoparticles have emerged as a safe, efficient, and inexpensive alternative for therapeutic uses. The present study discloses the silver nanoparticle biosynthesizing capability and cardioprotective potential of Syzygium cumini seeds already reported to have antidiabetic properties. Newly generated silver nanoparticles S. cumini MSE silver nanoparticles (SmSNPs) were characterized by UV-visible spectroscopy, scanning electron microscopy (SEM), zeta sizer, X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectroscopy. Using methanolic extract of S. cumini seeds, an average size of 40–100-nm nanoparticles with 43.02 nm and ?19.6 mV zeta potential were synthesized. The crystalline nature of SmSNPs was identified by using XRD. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS) assays revealed the antioxidative potential to be 66.87 (±0.7) % and 86.07 (±0.92) % compared to 60.29 (±0.02) % and 85.67 (±1.27) % for S. cumini MSE. In vitro study on glucose-stressed H9C2 cardiac cells showed restoration in cell size, nuclear morphology, and lipid peroxide formation upon treatment of SmSNPs. Our findings concluded that S. cumini MSE SmSNPs significantly suppress the glucose-induced cardiac stress in vitro by maintaining the cellular integrity and reducing the oxidative damages therefore establishing its therapeutic potential in diabetic cardiomyopathy.  相似文献   

13.
The changes in total phenolics, flavonoids, tannins, valerenic acid, and antioxidant activity were assessed in 25 populations of Valeriana jatamansi sampled from 1200 to 2775 m asl and four habitat types of Uttarakhand, West Himalaya. Significant (p?<?0.05) variations in total phenolics, flavonoids, valerenic acid, and antioxidant activity in aerial and root portions and across the populations were observed. Antioxidant activity measured by three in vitro antioxidant assays, i.e., 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic) (ABTS) radical scavenging, 2,2′-diphenyl-1-picryylhydrazyl (DPPH) free radical scavenging, and ferric-reducing antioxidant power (FRAP) assays, showed significant (p?<?0.05) differences across the populations. However, no clear pattern was found in phytochemicals across the altitudinal range. Among habitat types, (pine, oak, mixed forest, and grassy land), variation in phytochemical content and antioxidant activity were observed. Equal class ranking, neighbor-joining cluster analysis, and principal component analysis (PCA) identified Talwari, Jaberkhet, Manjkhali, and Khirshu populations as promising sources with higher phytochemicals and antioxidant activity. The results recommended that the identified populations with higher value of phytochemicals and antioxidants can be utilized for mass multiplication and breeding program to meet the domestic as well as commercial demand.  相似文献   

14.
Although poly(p-phenylenediamine) is an electric non-conductor, it exhibits, analogously to conducting polymers, redox activity and could, therefore, find applications in biomedicine. In the current work, the cytotoxicity of poly(p-phenylenediamine) polymer powder produced by the chemical oxidation of p-phenylenediamine with ammonium peroxydisulfate in acidic aqueous media has been studied. Primary mouse embryonic fibroblasts were used for this purpose. Interestingly, the standard methods for the determination of polymer cytotoxicity based on international standard EN ISO 10993-5 could not be applied. The reason was the interaction of polymer extracts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. On the basis of the evaluation of flow cytometry and micrographs taken by fluorescence microscopy on cells treated with extracts of poly(p-phenylenediamine), it can be concluded that the powder polymer possesses severe cytotoxicity. The results suggest that practical application of the polymer within biomedicine is, at the current state of knowledge, difficult, and modification of the preparation techniques and/or subsequent purification of poly(p-phenylenediamine) is needed.  相似文献   

15.
An innovative and effective extraction procedure based on molecularly imprinted solid-phase extraction (MISPE) was developed for the isolation of gonyautoxins 2,3 (GTX2,3) from Alexandrium minutum sample. Molecularly imprinted polymer microspheres were prepared by suspension polymerization and and were employed as sorbents for the solid-phase extraction of GTX2,3. An off-line MISPE protocol was optimized. Subsequently, the extract samples from A. minutum were analyzed. The results showed that the interference matrices in the extract were obviously cleaned up by MISPE procedures. This outcome enabled the direct extraction of GTX2,3 in A. minutum samples with extraction efficiency as high as 83 %, rather significantly, without any need for a cleanup step prior to the extraction. Furthermore, computational approach also provided direct evidences of the high selective isolation of GTX2,3 from the microalgal extracts.  相似文献   

16.
The present study aimed at preparing novel free-radical scavenging and water-soluble compounds derived from gelatin. Specifically, gelatin–syringaldehyde, gelatin–anisaldehyde, and gelatin–vanillin were synthesized and thoroughly studied for their physicochemical properties. In particular, the compounds were characterized by UV-Vis spectroscopy, Fourier-transform infrared spectroscopy, and scanning electron microscopy. Notably, as demonstrated by thermogravimetry and differential scanning calorimetry, all three derivatives exhibited higher thermal stability than gelatin itself. Free-radical scavenging activities of the examined compounds were explored by (i) a standard spectrophotometric ABTS assay and (ii) an assay of oxidative degradation of hyaluronic acid monitored by rotational viscometry. We found that gelatin and gelatin–syringaldehyde demonstrated the highest efficacy in scavenging OH radicals, whereas gelatin–anisaldehyde was the least effective. The efficacy of scavenging alkyloxy- and alkylperoxy-type free radicals via hydrogen-atom-transferring property was in the following order: gelatin > gelatin–vanillin > gelatin–syringaldehyde > gelatin–anisaldehyde. Electron-donor properties determined using the ABTS assay revealed the following order in one-electron reduction of ABTS•+: gelatin > gelatin–anisaldehyde > gelatin–vanillin > gelatin–syringaldehyde.  相似文献   

17.
Two series of new amide derivatives containing 2,6-diisobornylphenol moiety were synthesized based on 3,5-diisobornyl-4-hydroxybenzoic acid and 4-butylaminomethyl-2,6-diisobornylphenol. Toxicity, membrane-protective (MP) and antioxidant (AO) activity of the obtained compounds were evaluated using red blood cells of laboratory mice as the test object. The tests demonstrated the absence of hemolytic activity for all the synthesized derivatives and the presence of high MP and AO activity under conditions of acute H2O2-induced oxidative stress for (3,5-diisobornyl-4-hydroxyphenyl)(morpholino)methanone and N-n-butyl-N-(3,5-diisobornyl-4-hydroxybenzyl)acetamide. A comparison of the data of the newly obtained compounds and those of described earlier 2,6-diisobornylphenol derivatives with N- and O-containing fragments at position 4 (alkoxymethyl, carboxy, and aminomethyl derivatives) led to a conclusion that the most promising for further studies of pharmacological activity are compounds containing methoxycarbonyl, methoxymethyl, ethoxymethyl, morpholinomethyl, di-n-butylaminomethyl, (azepan-1-yl)methyl, or N-acetyl-N-alkylaminomethyl function, which provide low toxicity and high MP and AO activity.  相似文献   

18.

Background

In this study Aesculus indica fruit was subjected to isolation of phytochemicals. Two antioxidants quercetin and Mandelic acid were isolated in pure state. The free radical scavenging and acetyl choline esterase inhibitory potential of the crude extract and sub fractions were also determined.

Results

The antioxidant capacity of crude extract, fractions and isolated compounds were determined by DPPH and ABTS methods. Folin-Ciocalteu reagent method was used to estimate the total phenolic contents and were found to be 78.34?±?0.96, 44.16?±?1.05, 65.45?±?1.29, 37.85?±?1.44 and 50.23?±?2.431 (mg/g of gallic acid) in crude extract, ethyl acetate, chloroform, n-hexane and aqueous fractions respectively. The flavonoid concentration in crude extract, ethyl acetate, chloroform, n-hexane and aqueous fraction were; 85.30?±?1.20, 53.80?±?1.07, 77.50?±?1.12, 26.30?±?1.35 and 37.78?±?1.25 (mg/g of quercetin) respectively. The chloroform fraction was more potent against enzymes, acetyl choline esterase and butyryl choline esterase (IC50?=?85 and 160 μg/ml respectively). The phenolic compounds in the crude extract and fractions were determined using HPLC standard method. Chlorogenic acid, quercetin, phloroglucinol, rutin, mandelic acid and hydroxy benzoic acid were detected at retention times 6.005, 10.062, 22.623, 30.597, 35.490 and 36.211 in crude extract and different fractions. The ethyl acetate fraction was rich in the targeted compounds and was therefore subjected to column isolation. The HPLC chromatogram of isolated compounds showed single peak at specified retention times which confirms their isolation in pure state. The isolated compounds were then characterized by FTIR and NMR spectrophotometric techniques.

Conclusion

The Aesculus indica fruit extracts showed antioxidant and anticholine esterase inhibitory potentials. Two bioactive compounds were isolated in the pure form ethyl acetate fraction. From results it was concluded that the fruit of this plant could be used to minimize oxidative stress caused by reactive oxygen species.
  相似文献   

19.
Plant extracts are one of the best possible sources of bioactive molecules, and are being used globally as an antioxidants and natural antimicrobial compounds. In current study, Schefflera vinosa leaves extract was prepared through Soxhlet extraction procedure using methanol and chloroform as solvents. The extract was investigated for total antioxidant, phenolic and flavonoid contents, free radical scavenging and antimicrobial activities. The free radical scavenging activities were evaluated through 2,2- diphenyl-1-picrylhydrazyl (DPPH), 2,2′-azino-bis-3-ethylbenzotiazolin-6-sulfonic acid (ABTS) and Ferric-reducing/ antioxidant power (FRAP) assay. The antimicrobial activity of extract was determined through poisoned food method. The methanolic extract has exhibited high antioxidant, phenolic, and flavonoid activities compared to chloroform extract. Similarly, free radical scavenging activities (ABTS, DPPH and FRAP) were higher in methanolic extract. Further, Fourier-Transform Infrared Spectroscopy (FTIR) used to determine the functional group and Gas chromatography-mass spectrometry (GC–MS) to elucidate volatile composition of the crude extract. Different functional group like N-H, O-H, C-O, C-N, C-H, C=O, C≡C and C-O-H presence indicate the existence of many metabolites in the extracts. GC–MS study identified 61 compounds and subsequently, these molecules were screened virtually using DockThor. Furthermore, antimicrobial study was confirmed against rice pathogens like Magnaporthe oryzae (M. oryzae) and Xanthomonas oryzae pv. oryzae (Xoo). Molecular docking study further suggested that phytomolecules (3-Isopropoxy-1,1,1,7,7,7-hexamethyl-3,5,5-tris (trimethylsiloxy) tetrasiloxane, and 2-Methoxy-5-methylthiophene) targets Histone Deacetylase (HDAC) of M. oryzae and Peptide Deformylase (PDF) of Xoo, which could inhibit their growth. Hence, this study indicated that Schefflera vinosa extracts could be an important ingredient as an antioxidant as well as antimicrobial agent against rice pathogens.  相似文献   

20.
The thermal and thermo-oxidative processes in Aroniamelanocarpa (black chokeberry) were investigated using combined thermo-analytical (TG-DTA) and spectroscopic (FTIR) experimental techniques. Isoconversional analysis revealed that the process in an inert (argon) atmosphere was probably governed by chlorogenic acid degradation, where autocatalysis (described by the empirical ?esták-Berggren model) might occur due to water already present in the early stages of the process through hydrolysis. Thermal degradation is described by the intrinsic kinetic parameters, where the degradation rate increases proportionally with an increase in the heating rate. Under oxidative conditions, the process was found to be primarily driven by neochlorogenic acid degradation. The thermo-oxidative degradation of Aroniamelanocarpa fresh samples can be described by two competitive reactions, where it was established that a cyanidin-3-glucosylrutinoside degradation made a significant contribution to a comprehensive kinetics. This study showed the targeting of the neochlorogenic acid in Aroniamelanocarpa fresh samples to have a strong hydrogen-donating activity, thereby rendering it capable of very efficiently entrapping the peroxy radicals. Current research has demonstrated that the relative contribution of the two competitive reactions to the overall process is highly dependent on the heating rate of the system under consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号