首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel potentiometric sensor, based on carbon paste electrode (CPE), modified with ion-imprinted polymer (IIP) and multi-walled carbon nanotubes (MWCNTs), is introduced for detection of chromium (III). The IIP nanomaterial was synthesised and characterised by using scanning electron microscopy and Fourier Transform Infrared. The modification of the CPE with the IIP (as a ionophore) resulted in an all-solid-state Cr(III)-selective sensor. However, the presence of appropriate amount of MWCNTs in the electrode composition was found to be necessary to observe Nernstian response. The optimised electrode composition was 76.7% graphite, 14.3% binder, 5% IIP, and 4% CNT. The proposed sensor exhibited Nernstian slope of 20.2 ± 0.2 mV decade?1 in the working concentration range of 1.0 × 10?6?1.0 × 10?1 mol L?1 (52 µg L?1–5.2 g L?1), with a detection limit of 5.9 × 10?7 mol L?1 (30.68 µg L?1) and a fast response time of less than 40 s. It displayed a stable potential response in the pH range of 2–5. It exhibited also high selectivity over some interfering ions. The proposed sensor was successfully applied for the determination of Cr(III) in real samples (sea, river water and soil).  相似文献   

2.
Simultaneous analysis of homotaurine and its homologous, taurine, is a highly challenging issue, especially in matrices they exist simultaneously. A simple precolumn derivatization procedure combined with high-performance liquid chromatography–fluorescence detection was developed for simultaneous determination of homotaurine and taurine in marine macro-algae. The analytes were derivated with o-phthalaldehyde at an ambient temperature and alkaline medium. Calibration curves were linear in the ranges of 50–2500 µg L?1 for homotaurine and 100–2500 µg L?1 for taurine with the coefficients of determination higher than 0.998. Limits of detection of homotaurine and taurine were 15 and 30 µg L?1, respectively. Intraday (n = 6) and inter-day (n = 4) precisions of the method were satisfactory with relative standard deviations less than 6.0%. Good recoveries (>94%) were acquired by the method for extraction of homotaurine and taurine from algae matrices. Liquid chromatography–mass spectrometry was also used to confirm detection of the analytes in algae samples. The data suggest that the method was successfully applied to simultaneous determination of homotaurine and taurine in algae samples.  相似文献   

3.
We have synthesized the near-infrared water-soluble conjugated polymer poly[2,5-di(propyloxysulfonate)-1,4-phenylene-ethynylene-9,10-anthrylene (referred to as PPEASO3). Its fluorescence (at wavelengths between 650 and 800?nm following photoexcitation at 550?nm) is efficiently quenched by Cu(II) ions, while other physiologically relevant metal ions do not cause significant quenching at the same concentrations. Under optimum conditions, fluorescence intensity is inversely proportional to the concentration of Cu (II). The calibration curve displays two linear regions over the range of 0–3.2?×?10?7 mol L?1 and 3.2?×?10?7 mol L?1 to 1.0?×?10?4 mol L?1 of Cu(II), respectively. The long-wavelength excitation and emission can substantially reduce interferences by the autofluorescence and light scattering of biological matter under UV excitation. The method was successfully applied to the determination of Cu(II) in synthetic and tea samples.
Figure
Highly sensitive fluorescent sensor with low background interference was successfully applied to the determination of Cu (II) in synthetic and real samples, based on amplified fluorescence quenching of a water-soluble NIR emitting conjugated polymer.  相似文献   

4.
《Analytical letters》2012,45(6):1183-1191
Abstract

A study of the enhancement effect on the fluorescence intensity of the Eu3+–-thenoyltrifluoroacetone (TTA)–-cetyltri–-methylammonium bromide (CTMAB) and the Dy3+ pyrocatechol–-3,5-disulphonic acid (Tiron) systems by Y3+has been carried out. In the presence of yttrium the fluorescence intensity of the systems was enhanced by a factor of about 100 and 15, respectively. The fluorescence intensity was a linear function of the concentration of europium or dysprosium in the range 1.0 × 10?10–-1.0 × 10?8mol dm?3 and 8.0 × 10?8–-9.0 × 10?6mol dm?3, respectively. The detection limit was 1.0 × 10?11mol dm?3 and 1.0 × 10?10mol dm?3, respectively. The standard addition method was used for the determination of europium or dysprosium in rare earth oxides and gave satisfactory results. The mechanism of enhanced fluorescence was proposed.  相似文献   

5.
An on-line pre-concentration system for the sequential determination of cadmium and lead in drinking water by using fast sequential flame atomic absorption spectrometry (FS-FAAS) is proposed in this paper. Two minicolums of polyurethane foam loaded with 2-(6-methyl-2-benzothiazolylazo)-orcinol (Me-BTAO) were used as sorptive pre-concentration media for cadmium and lead. The analytical procedure involves the quantitative uptake of both analyte species by on-column chelation with Me-BTAO during sample loading followed by sequential elution of the analytes with 1.0?mol?L?1 hydrochloric acid and determination by FS-FAAS. The optimisation of the entire analytical procedure was performed using a Box–Behnken multivariate design utilising the sampling flow rate, sample pH and buffer concentration as experimental variables.

The proposed flow-based method featured detection limits (3σ) of 0.08 and 0.51?µg?L?1 for cadmium and lead, respectively, precision expressed as relative standard deviation (RSD) of 1.63% and 3.87% (n?=?7) for cadmium at the 2.0?µg?L?1 and 10.0?µg?L?1 levels, respectively, and RSD of 6.34% and 3.26% (n?=?7) for lead at the 5.0?µg?L?1 and 30.0?µg?L?1 levels, respectively. The enrichment factors achieved were 38.6 and 30.0 for cadmium and lead, respectively, using a sample volume of 10.0?mL. The sampling frequency was 45 samples per hour. The accuracy was confirmed by analysis of a certified reference material, namely, SRM 1643d (Trace elements in natural water). The optimised method was applied to the determination of cadmium and lead in drinking water samples collected in Santo Amaro da Purificação City, Bahia, Brazil.  相似文献   

6.
AgSIE was used for the direct analysis of folic acid (FA), with a detection limit and lower level of quantitation of 6.8×10?10 mol L?1 and 2.3×10?8 mol L?1. The analysis in fresh and processed fruits was done without any sample pretreatment. In strawberry and acerola juices, FA concentration level values were below the method detection limit. FA was detectable in peach (77.7±0.4 µg L?1 and 64.4±0.5 µg L?1), Persian lime (45.4±0.7 µg L?1), pineapple Hawaii (66.2±0.4 µg L?1), pear pineapple (35.3±0.6 µg L?1), cashew (54.4±0.5 µg L?1), passion fruit (73.2±0.3 µg L?1), and apple (84.4±0.5 µg L?1).  相似文献   

7.
Yazhen Wang 《Mikrochimica acta》2011,172(3-4):419-424
The electrochemistry of uric acid at a gold electrode modified with a self-assembled film of L-cysteine was studied by cyclic voltammetry and differential pulse voltammetry. Compared to the bare gold electrode, uric acid showed better electrochemical response in that the anodic peak current is stronger and the peak potential is negatively shifted by about 100 mV. The effects of experimental conditions on the oxidation of uric acid were tested and a calibration plot was established. The differential pulse response to uric acid is linear in the concentration range from 1.0?×?10?6 to ~?1.0?×?10?4 mol?L?1 (r?=?0.9995) and from 1.0?×?10?4 to ~?5.0?×?10?4 mol?L?1 (r?=?0.9990), the detection limit being 1.0?×?10?7 mol?L?1 (at S/N?=?3). The high sensitivity and good selectivity of the electrode was demonstrated by its practical application to the determination of uric acid in urine samples.
Cyclic voltammograms of UA at the bare electrode (a,b) and the L-Cys/Au electrode (c,d,e) in HAc-NaAc buffer containing different concentrations of UA. (a,c): blank; (b, d): 2.0?×?10?5 mol?L?1; (e) 4.0?×?10?5 mol?L?1. Scan rate: 100 mV?s?1  相似文献   

8.
Monodisperse and “naked” gold nanoparticles (GNPs) were modified with thioglycolic acid (TGA). The fluorescence of rhodamine B (RB) is quenched completely by the gold NPs surface with negative charge mainly as a result of fluorescence resonance energy transition (FRET) and collision. The quenching mechanism can be described by a Langmuir isotherm, which was systematically investigated by steady-state fluorescence spectrometry and absorption spectrometry. Hg(II) ion disrupts the GNPs–RB pair, producing a large “switch-on” fluorescence. A low background, highly sensitive and reproducible fluorescence assay for Hg(II) is presented. Under the optimum conditions, the restoration fluorescence intensity is proportional to the concentration of Hg(II). The calibration graphs are linear over the range of 1.0?×?10?9 to 3.1?×?10?8 mol L?1 with a detection limit of 4.0?×?10?10 mol L?1. The relative standard deviation was 1.2% for a 5.0?×?10?9 mol L?1 Hg(II) solution (N?=?6). This method was applied to the analysis of Hg(II) in environmental water samples, and the results were consistent with those of atomic absorption spectroscopy (AAS).  相似文献   

9.
《Analytical letters》2012,45(11):2117-2132
Abstract

Water-soluble cadmium sulfide (CdS) quantum dots (QD) capped by mercaptoacetic acid were synthesized by aqueous-phase arrested precipitation and characterized by transmission electron microscopy, a spectrofluorometer, and an ultraviolet visible (UV-Vis) spectrophotometer. Based on the fluorescence quenching of CdS QD by selenite in the presence of glutathione (GSH), a simple, rapid, sensitive, and selective detection method for selenite was proposed. Under the optimum conditions, the calibration graph was linear in the range of 0.05 µmol L?1 to 11.2 µmol L?1. The limit of detection is 0.03 µmol L?1. The usefulness of the proposed method was evaluated for the determination of selenite in sodium selenite tablet and sodium selenite and vitamin E injection, and the results agreed with the labeled values. In addition, the effect of foreign ions (common anions and biologically relevant cations) on the fluorescence of the CdS QD was examined to evaluate the selectivity. The quenching mechanism is also described.  相似文献   

10.
In the existing study, a new vortex-assisted cloud point extraction (VA-CPE) method was developed for determination of low levels of thiosulfate in environmental waters at 632 nm by spectrophotometry. The method is selectively based on charge-transfer-sensitive ion-pair complex formation of Ag(S2O3)2 3?, which is produced by the reaction of thiosulfate with excess Ag+ ions with toluidine blue (3-amino-7-dimethylamino-2-methylphenazathionium chloride, TB+) and then its extraction into micellar phase of polyethylene glycol 4-tert-octylphenyl ether (Triton X-45) in presence of Na2SO4 as salting-out agent at pH 7.0. All the factors affecting complex formation and VA-CPE efficiency were optimized in detail. Under the optimized conditions, the linear calibration curves for thiosulfate were in the range of 0.2–120 and 5–180 µg L?1 with sensitivity improvement of 81-folds and 15-folds, respectively, as a result of efficient mass transfer obtained by CPE with and without vortex, while it changed in the range of 260–3600 µg L?1 without preconcentration at 642 nm. The limits of detection and quantification of the method for VA-CPE were found to be 0.05 and 0.22 µg L?1, respectively. The precision (expressed as the percent relative standard deviation) was in range of 2.5–4.8% (5, 10 and 25 µg L?1, n: 5). The method accuracy was validated by comparing the results to those of an independent 5,5′-dithiobis(2-aminobenzoic acid) (DTNB) method as well as recovery studies from spiked samples. It has been observed that the results are statistically in a good agreement with those obtained by DTNB method. Finally, the method developed was successfully applied to the preconcentration and determination of trace thiosulfate from environmental waters.  相似文献   

11.
This paper describes the development a novel ruthenium(II) complex‐ZnO/CNTs modified carbon paste electrode (Ru(II)/ZnO/CNTs/CPE) for the electrocatalytic determination of ascorbic acid (AA). The objective of this novel electrode modification was to seek new electrochemical performances for the detection of AA, nicotinamide adenine dinucleotide (NADH) and folic acid (FA). The peak potentials recorded were 170, 500 and 830 mV vs. Ag/AgCl/KClsat for AA, NADH and FA, respectively. The peak currents were linearly dependent on AA, NADH and FA concentrations using square wave voltammetry (SWV) method at the ranges of 0.008–251, 1.0–650, and 3.0–700 µmol L?1, with detection limits of 0.005, 0.5, and 1.0 µmol L?1, respectively.  相似文献   

12.
N‐(3,4‐dihydroxyphenethyl)‐3,5‐dinitrobenzamide modified multiwall carbon nanotubes paste electrode was used as a voltammetric sensor for oxidation of penicillamine (PA), uric acid (UA) and tryptophan (TP). In a mixture of PA, UA and TP, those voltammograms were well separated from each other with potential differences of 300, 610, and 310 mV, respectively. The peak currents were linearly dependent on PA, UA and TP concentrations in the range of 0.05–300, 5–420, and 1.0–400 µmol L?1, with detection limits of 0.021, 2.0, and 0.82 µmol L?1, respectively. The modified electrode was used for the determination of those compounds in real samples.  相似文献   

13.
This study presents an easy and cost-effective flow-based cloud point extraction (CPE) method for determining partial amounts of two organophosphorus pesticides (phosalone and ethion) in seawater by HPLC–UV–Vis. In continues CPE methodology, the effect of the different column packing type such as carbon nanotube, polyacrylonitrile nanofiber and fiberglass on pesticide extraction was investigated. The Triton X-100 was utilized as nonionic surfactant, and moreover, effect of different parameters such as pH, temperature, extraction time, surfactant concentration, type and volume of the eluent solution on the extraction efficiency was optimized. Under optimum conditions, the figures of merit of the method for phosalone and ethion were obtained as: the enrichment factor (172 and 166), line range (0.8–300 and 0.5–300 µg L?1, R 2 = 0.9973 and 0.9982), relative standard deviation in concentration of 200 µg L?1 (%RSD = %5.4 and %7.99, N = 5) and limit of detection (LOD = 0.24 and 0.14 µg L?1). The suggested method was successfully used for determination of phosalone and ethion in Chabahar Bay seawaters with satisfactory results.  相似文献   

14.
Magnetic nanoparticle-assisted solid-phase dispersion (MMSPD) combined with dispersive liquid–liquid microextraction (DLLME) prior to high performance liquid chromatography with fluorescence detector (HPLC–FLU) is presented for determination of ultra trace Bisphenol A (BPA) in water. Magnetic multi-walled carbon nanotubes (MMWCNTs) were synthesized for the adsorption of BPA in water. Ultra trace BPA in water was transferred into the elute solvent by the MMSPD and further concentrated into trace volume extraction solvent by the DLLME. The limit of detection and limit of quantitation were 0.003 and 0.01 µg L?1, respectively. Good linearity of BPA was found, ranging from 0.01 to 10 µg L?1, with good squared regression coefficient (R 2) of 0.9999. Additionally, relative recoveries were 83.1 and 95.9% for two environmental water samples spiked with 0.20 µg L?1 BPA, respectively. All results showed that the MMWCNTs nanoparticle-assisted MMSPD–DLLME–HPLC–FLU method was simple and reliable for the determination of ultra trace BPA in environmental water.  相似文献   

15.
《Analytical letters》2012,45(14):2145-2164
A study on the suitability of chromatographic techniques such as high performance anion exchange chromatography (HPAEC) with fluorescence detection (FL) and pulsed amperometric detection (PAD) and reversed phase (RP) chromatography for the determination of galactosamine, glucosamine, mannosamine, and muramic acid in soil hydrolysates was carried out. The reversed phase fluorescence method was rapid, provided good validation parameters, and employed relatively inexpensive instrumentation. The HPAEC methods had slightly higher limits of quantification, 0.6–5.0 µmol L?1 (HPAEC-FL) and 1.0–10.0 µmol L?1 (HPAEC-PAD), compared to the reversed phase fluorescence method (0.5–5.0 µmol L?1). Various sample pretreatment methods and chromatographic methods were investigated and the advantages and disadvantages of the HPLC methods are discussed.  相似文献   

16.
Isochrysis is a genus of marine algae without cell wall and capable of accumulating lipids. In this study, the lipid production potential of Isochrysis was assessed by comparing 15 Isochrysis strains with respect to their growth rate, lipid production, and fatty acid profiles. Three best strains were selected (lipid productivity, 103.0~121.7 mg L?1 day?1) and their lipid-producing capacities were further examined under different controlled parameters, e.g., growth phase, medium nutrient, and light intensity in laboratory cultures. Furthermore, the three Isochrysis strains were monitored in outdoor panel photobioreactors with various initial cell densities and optical paths, and the strain CS177 demonstrated the superior potential for outdoor cultivation. A two-stage semi-continuous strategy for CS177 was subsequently developed, where high productivities of biomass (1.1 g L?1 day?1) and lipid (0.35 g L?1 day?1) were achieved. This is a comprehensive study to evaluate the lipid-producing capability of Isochrysis strains under both indoor and outdoor conditions. Results of the present work lay a solid foundation for the physiological and biochemical responses of Isochrysis to various conditions, shedding light on the future utilization of this cell wall-lacking marine alga for biofuel production.  相似文献   

17.
This study describes the successful sequential modification of multi-walled carbon nanotube (MWCNT) by Fe3O4 magnetic nanoparticles and 2-mercaptobenzothiazole (MBT) followed by its application as a novel sorbent for simultaneous magnetic solid phase microextraction of lead and cadmium. Fourier transform infrared spectroscopy and scanning electron microscopy were employed to confirm the chemical surface modification of the MWCNT. The ions retained on the 2-MBT/magnetic nanoparticles modified MWCNTs were eluted with 1.0 mL of nitric acid (0.8 mol L?1) in methanol solution and determined by the flame atomic absorption spectrometry. All parameters affecting the extraction condition were thoroughly investigated and optimised. Under the optimised condition preconcentration factor of 150.0, enhancement factors of 149.0 and 149.2 and limits of detection of 0.21 and 0.01 µg L?1 were achieved for lead and cadmium, respectively. Using the prepared magnetic nanocomposite, the possible interference of other common ions associated with lead and cadmium determination was effectively avoided and the method was successfully applied to the simultaneous determination of the target ions in various environmental water samples.  相似文献   

18.
This study is aimed to develop an electroanalytical methodology using a boron-doped diamond electrode to determine simultaneously and selectively carbendazim (CBZ) and carbaryl (CAR). In previous studies using cyclic voltammetry oxidation, peaks were observed at 1.03 V (CBZ) and 1.44 V (CAR), with characteristics of an irreversible process controlled by diffusion of species, with a supporting electrolyte of BR buffer (0.1 mol L?1) and pH adjusted to 6.0. The differences between the potentials for both pesticides, about 400 mV, indicate the possibility of selective determination of CBZ and CAR. The square-wave voltammetric parameters were optimised. The best separation conditions were pH 6.0, square-wave frequency of 100 s?1, pulse amplitude of 50 mV and scan increment of 2.0 mV. These parameters were used to obtain the calibration curves of CBZ and CAR. An analytical curve was constructed in the range concentration of CBZ of 1.3 mg L?1 to 15.3 mg L?1 and CAR of 1.0 mg L?1 to 11.4 mg L?1, respectively. The limits of detection (LOD) and limits of quantification (LOQ) for CBZ were 0.40 mg L?1 and 1.30 mg L?1, respectively. For CAR, the LOD and LOQ were 0.30 mg L?1 and 1.00 mg L?1, respectively. Sensitivity values were 0.78 and 2.60 µA/mg L?1 for CBZ and CAR, respectively. The electroanalytical method was applied in Mikania glomerata infusions. The recovery values were 106.2% and 116.5% for CBZ and CAR, respectively. The results show that the developed method is suitable for application in medicinal plant samples.  相似文献   

19.
A simple, low-cost and sensitive electroanalytical method was developed for the simultaneous determination of p-nitrophenol and o-nitrophenol isomers in water samples at a glassy carbon electrode (CGE) in the presence of cationic surfactant. The electrochemical behavior of p-nitrophenol and o-nitrophenol was studied by cyclic voltammetry (CV) in 0.1?mol L?1 acetate/acetic acid buffer (pH 3.70) in the presence and absence of cetylpyridinium bromide. The resolution of overlapped cathodic peaks potentials (Epc) of isomers was successfully improved in the presence of 100.0?µmol L?1 cetylpyridinium bromide, thus making this approach ideal for the simultaneous determination of isomers. Under the optimized conditions in 0.05?mol L?1 HEPES buffer at pH 7.0 using differential pulse voltammetry (DPV) at a scan rate of 45?mV s?1, pulse amplitude of 220?mV and modulation time of 10?ms, limits of detection 0.59?µmol L?1 for p-nitrophenol and 1.14?µmol L?1 for o-nitrophenol were obtained with linear ranges from 2.0 to 60.0?µmol L?1 and 3.0 to 60.0?µmol L?1, respectively. The intraday precision was assessed as relative standard deviation (%) for 20.0 and 40.0?µmol L?1 concentrations were 4.30% and 2.41% for p-nitrophenol and 4.87% and 2.20% for o-nitrophenol, respectively. The developed method was applied for the determination of the isomers in lake water samples. The accuracy was attested by comparison with high-performance liquid chromatography with diode array detection (HPLC-DAD) as a reference analytical technique. Recovery values ranging from 90.3% to 111.8% also attested to the accuracy of method for analysis of real samples.  相似文献   

20.
In this study dibenzylidene ketone derivatives (2E,5E)-2-(4-methoxybenzylidene)-5-(4-nitrobenzylidene) cyclopentanone (AK-1a) and (1E,4E)-4-(4-nitrobenzylidene)-1-(4-nitrophenyl) oct-1-en-3-one (AK-2a) were newly synthesized, inspired from curcuminoids natural origin. Novel scheme was used for synthesis of AK-1a and AK-2a. The synthesized compounds were characterized by spectroscopic techniques. AK-1a and AK-2a showed high computational affinities (E-value >???9.0 kcal/mol) against cyclooxygenase-1, cyclooxygenase-2, proteinase-activated receptor 1 and vitamin K epoxide reductase. AK-1a and AK-2a showed moderate docking affinities (E-value >???8.0 kcal/mol) against mu receptor, kappa receptor, delta receptor, human capsaicin receptor, glycoprotein IIb/IIIa, prostacyclin receptor I2, antithrombin-III, factor-II and factor-X. AK-1a and AK-2a showed lower affinities (E-value >???7.0 kcal/mol) against purinoceptor-3, glycoprotein-VI and purinergic receptor P2Y12. In analgesic activity, AK-1a and AK-2a decreased numbers of acetic acid-induced writhes (P?<?0.001 vs. saline group) in mice. AK-1a and AK-2a significantly prolonged the latency time of mice (P?<?0.05, P?<?0.01 and P?<?0.001 vs. saline group) in hotplate assay. AK-1a and AK-2a inhibited arachidonic acid and adenosine diphosphate induced platelet aggregation with IC50 values of 65.2, 37.7, 750.4 and 422 µM respectively. At 30, 100, 300 and 1000 µM concentrations, AK-1a and AK-2a increased plasma recalcification time (P?<?0.001 and P?<?0.001 vs. saline group) respectively. At 100, 300 and 1000 µg/kg doses, AK-1a and AK-2a effectively prolonged bleeding time (P?<?0.001 and P?<?0.01 vs. saline group) respectively. Thus in-silico, in-vitro and in-vivo investigation of AK-1a and AK-2a reports their analgesic, antiplatelet and anticoagulant actions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号