首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The effects of SO2 and CO2 additives in electrolytes on the cycle properties of liquid-state Al-plastic film lithium-ion batteries were first investigated. The experimental electrolytes were added with different amounts of SO2 and CO2. The baseline electrolyte was 1 mol L−1 LiPF6 in ethylene carbonate/dimethylcarbonate/ethyl-methyl carbonate (1:1:1, by volume), and graphite was used as anode. The main analysis tools were cycling test, rate capability, internal resistance test, low-temperature performance, and thermal stability. The results showed that both of the additives could promote to form an excellent solid electrolyte interface film on the surface of graphite anode, leading to excellent cycle performances, the capacity retentions of CO2 and S5 were 94% and 97% after 400 cycles, respectively. Besides, the results also exhibited that the electrochemical performances of internal resistance, rate capability, low-temperature performance, and thermal stability were not changed significantly by the use of SO2 and CO2 as electrolyte additives.  相似文献   

2.
SnO2-TiO2 (S-T) composites with different molar ratios were prepared by mechanical mixing followed by sintering at 700 °C for 4 h in air. The structural and microstructural properties of the composites were investigated using powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM). S-T composites were investigated by introducing SO2 to test their chemical stability using PXRD and SEM coupled with energy dispersive X-ray (EDX) analysis. The sensing performance was measured at different temperatures using various SO2 concentrations (10–100 ppm). A composite comprising 25 mol% of SnO2 and 75 mol% TiO2 (S25-T75) exhibited the highest sensitivity comparing to other S-T composites studied under the presently investigated conditions. t 90 (90 % of response time) was found to be ~5 min for thick pellet (~2 mm in thickness). SO2 sensing mechanism has been explained through the band structure model.  相似文献   

3.
Composite electrolytes are well-known multiphase systems and exhibit maxima in the conductivity at certain second-phase concentration. An attempt has been made to investigate a number of sodium sulfate (Na2SO4)-based composite systems. The dispersoids that have been used are MgO, Al2O3, and SiO2. The samples have been characterized using impedance spectroscopy, X-ray diffraction, and differential scanning calorimetry. The maximum conductivity has been observed for MgO dispersed system, and the percolation threshold has been observed at 30-mol% dispersoid, MgO concentration. Interestingly, two maxima have been observed in case of the Na2SO4–SiO2 and Na2SO4–Al2O3 composite systems. In the Na2SO4–SiO2 system, the first maximum occurs at lower concentration, i.e., in the range between 10 and 20 mol%, whereas the second occurs at the 40-mol% dispersoid concentration. For the Na2SO4–Al2O3 system, although slightly indistinguishable, two peaks in the conductivity vs composition plot have been observed around 12- and 30-mol% Al2O3 concentrations.  相似文献   

4.
Experimental data on the evaporation kinetics of saturated K2SO4 solution drops and the nucleation kinetics of the first crystals are used to develop a simple procedure for the calculation of the solution concentration and the number, size, and dispersity of growing crystals. The calculation results agree well with the experimental data on the growth kinetics of K2SO4 crystals and their dispersity after complete evaporation of water. The dispersity of crystals is shown to linearly depend on the reciprocal time of evaporation of drops having different initial heights.  相似文献   

5.
The infrared reflectance spectra of a mechanically free or uniaxial-pressure-confined (NH4)2SO4 crystal were studied for the first time in the spectral range 800–1700 cm?1 in three crystallographic directions. Using the Kramers-Kronig relations, the dispersion and pressure dependences of the following quantities are obtained: the index of refraction n, the real (?1) and imaginary (?2) parts of the permittivity, the frequencies of longitudinal (ωLO) and transverse (ωTO) optical vibrations, the damping constant γ, and the oscillator strength f of the mechanically free or clamped (NH4)2SO4 crystal. A considerable change in the main reflection bands with pressure was observed, which is due to the effect of uniaxial pressure on the NH4 and SO4 tetrahedral frames.  相似文献   

6.
We produce SO2 molecules with a centre of mass velocity near zero using a Stark decelerator. Since the initial kinetic energy of the supersonic SO2 molecular beam is high, and the removed kinetic energy per stage is small, 326 deceleration stages are necessary to bring SO2 to a complete standstill, significantly more than in other experiments. We show that in such a decelerator possible loss due to coupling between the motional degrees of freedom must be considered. Experimental results are compared with 3D Monte-Carlo simulations and the quantum state selectivity of the Stark decelerator is demonstrated.  相似文献   

7.
High chemical reactivity and large surface-to-volume ratio have recently led to growinginterest in the employment of silicon nanowires (SiNWs) in sensing applications forchemical species detection. The working principle of SiNWs sensors resides in thepossibility to induce modifications in their electronic properties via molecularinteraction. A detailed analysis of the interaction of Si with molecular compounds is thenrequired to design and optimize NW-based sensors. Here we study the mechanisms ofadsorption on SiNWs of SO2, an air pollutant with pernicious effects on humans.First-principles density-functional calculations are performed to calculate the electronicstructure of a SO2molecule adsorbed at a silicon surface in case of undoped substrate and in presence ofsubstitutional subsurface and deep boron impurities. Comparing the results with the caseof NO2 adsorption –a similar molecule that, nonetheless has a very different interaction with a Si surface –,we show the specific traits of SO2 interaction: formation of localized states in theband-gap and absence of reactivation of pre-existing and passivated sub-surfaceimpurities. A connection between the modifications in the system electronic structure andthe strength of the molecular interaction is discussed.  相似文献   

8.
The addition of polymethyl methacrylate (PMMA) having different molecular weights to electrolytes containing ammonium trifluoromethanesulfonate (NH4CF3SO3) in diethyl carbonate (DEC) has been found to result in conductivity enhancement and to yield gel electrolytes with conductivity higher than the corresponding liquid electrolytes. The increase in conductivity has been found to be due to the dissociation of undissociated NH4CF3SO3 and ion aggregates present in the electrolytes, and this has been supported by Fourier transform infrared spectroscopy results, which suggests active interaction of PMMA and NH4CF3SO3 in these gel electrolytes. The increase in conductivity also depends upon the molecular weight of the polymer used and is relatively more for PMMA having lower molecular weight. The increase in viscosity with PMMA addition also depends upon the molecular weight of the polymer and is closely related to the conductivity behavior of these electrolytes. Polymer gel electrolytes have been found to be thermally stable up to a temperature of 125 °C.  相似文献   

9.
Rusi  C.-K. Sim  S. R. Majid 《Ionics》2017,23(5):1219-1227
Polyaniline (PANI) nanowire electrode was successfully prepared using electrodeposition method. The morphology, thickness, and electrochemical performance of PANI electrode can be controlled by varying the deposition scan rates. Lower deposition scan rate results in compact and aggregates of PANI nanowire morphology. The uniform nanowire of PANI was obtained at the applied scan rate of 100 mV s?1, and it was used as symmetric electrode coupled with H2SO4/polyvinyl alcohol (PVA) gel electrolyte. The different concentrations of H2SO4 acid in polymer electrolyte have influenced the electrochemical performance as well. The optimum specific capacitance and energy density of P100 PANI electrode in 3 M H2SO4/PVA gel polymer electrolyte was 377 F g?1 and 95.4 Wh kg?1 at the scan rate of 1 mV s?1. The good stability of the electrode in this system is applicable to many wearable electronics applications.  相似文献   

10.
(Y1-xGdx)2O3:Eu phosphor particles with dense morphology were prepared by flame spray pyrolysis and the effect of LiCl flux on the crystallinity, morphology, and photoluminescence characteristics of the particles was investigated. All as-prepared particles had monoclinic phase regardless of flux and had different luminescence characteristics from those of commercial Y2O3:Eu particles of cubic phase. The addition of LiCl flux reduced the post-treatment temperature by 300 °C for phase transformation from the monoclinic phase to the cubic phase. The post-treatment temperature of (Y0.75Gd0.25)2O3:Eu particles for phase transformation decreased from 1100 °C to 700 °C when LiCl flux was used. The morphology of the particles was also influenced by the Y/Gd ratio and the LiCl flux. The as-prepared particles had spherical shape and non-aggregation characteristics regardless of Y/Gd ratio and flux. The sphericity of the as-prepared particles prepared without flux was maintained after post-treatment for phase transformation in all Y/Gd ratios. However, LiCl addition promoted the aggregation between product particles. The prepared particles had high photoluminescence intensities comparable to that of the commercial product. PACS 64.70.Kb; 78.55.-m; 81.20.Rg; 75.50.Tt  相似文献   

11.
The infrared reflection spectra of mechanically free and uniaxially compressed LiNH4SO4 crystals are studied for the first time in the spectral range of 800–1700 сm–1 along three crystallophysical directions. The Kramers–Kronig dispersion relations are used to determine the dispersion and baric dependences of refractive index n and the real ε1 and imaginary ε2 parts of the dielectric constant and to calculate the frequencies of longitudinal ωLO and transverse ωТO vibrations, decay constant γ, and oscillator strength f of mechanically free and compressed LiNH4SO4 crystals. The considerable changes observed in the main reflection bands are explained by the effect of uniaxial pressures on the NH4 and SO4 tetrahedra.  相似文献   

12.
A new series of nanocomposite polymer electrolyte (NCPE) system comprising of polyethylene oxide (PEO) and polypropylene glycol (PPG) as blended polymer host, zinc trifluoromethanesulfonate [Zn(CF3SO3)2] as dopant salt and nanocrystalline alumina [Al2O3] as filler was prepared by solution casting technique. The present system consisting of five different compositions of 87.5 wt% (PEO:PPG)–12.5 wt% Zn(CF3SO3)2 + x wt% Al2O3 [where x = 1, 3, 5, 7 and 9, respectively] has been thoroughly characterized by various analytical techniques such as electrical impedance spectroscopy, X-ray diffraction (XRD) studies, differential scanning calorimetry (DSC), scanning electron microscopic (SEM) analysis and linear sweep voltammetry (LSV). The maximum room temperature ionic conductivity exhibited by the NCPE was found to be 2.1 × 10?4 S cm?1 for 3 wt% loading of Al2O3 which is an order higher than that of the optimized filler-free zinc salt doped polymer electrolyte system at 298 K. The evidence of a decrease in the degree of crystallinity responsible for the enhanced conductivity was revealed by the XRD data and further confirmed by DSC and SEM results. Moreover, the electrochemical stability window of the highly conducting electrolyte matrix has been experimentally determined by linear sweep voltammetry and found to be 3.6 V which is fairly adequate for the construction of zinc primary batteries as well as zinc-based rechargeable batteries at ambient conditions.  相似文献   

13.
Rare-earth-based infinite coordination polymer (RE-ICP) spheres with diameters ranging from 50 nm to 2 μm have been prepared using meso-2,3-dimercaptosuccinic acid (DMSA) as ligand under hydrothermal conditions. RE2O2SO4 microspheres with similar morphology were obtained by calcining the corresponding RE-ICP spheres. However, as for Ce-ICP and Sc-ICP, CeO2 and Sc2O3 were obtained. The products were characterized using X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, infrared spectroscopy, laser Raman spectrometry, and energy-dispersive X-ray spectrum. Elemental analysis and inductive coupled plasma atomic emission spectrometer were adopted to study the composition of the Eu-ICP. To explore their potential applications, several samples of the products were selected and their properties were investigated. The Eu-ICP and Eu2O2SO4 microspheres give strong red emissions when excited with a 394-nm ultraviolet light. Furthermore, the Eu-ICP displays a high selectivity for Fe(III). The obtained CeO2 has a strong absorption in the UV region and the Gd2O2SO4 microspheres show paramagnetic behavior.
Graphical abstract A series of RE2O2SO4 microspheres were prepared using a coordination polymer precursor method.
  相似文献   

14.
Polarization characteristics of the paratellurite TeO2 crystal were studied in the model of the molecular cluster represented by the (TeO2)3 molecular chain. Nonempirical calculations of linear and nonlinear polarizability reveal a steep growth of the second hyperpolarizability when passing on from the single TeO2 molecule to the molecular chain (TeO2)3, which may be related to intermolecular contacts. Linear polarizability of isostructural molecules SO2, SeO2, and TeO2 have an equal order of magnitude, while the second hyperpolarizability of TeO2 is somewhat higher than that of SeO2 and exceeds the SO2 polarizability by an order of magnitude.  相似文献   

15.
The composition of volatile and solid products of oxidation of hydrogen sulfide and stainless steel in gas mixtures containing H2S, O2, H2O, and CO2 has been determined using mass spectrometry, x-ray diffraction analysis, and scanning electron microscopy. It has been shown that holding an H2S–O2 mixture at 301 K results in prevailing formation of elemental sulfur and iron sulfides in the form of porous hygroscopic crust on the reactor wall surface. Formation of gas-phase sulfur causes self-acceleration of the oxidation of hydrogen sulfide; the resulting water triggers corrosion of the reactor wall. Heating of the resulting sulfur-sulfide crust in O2 medium is accompanied by formation of SO2 and heat release at T > 508 K. After heating of the H2S–CO2 mixture to 615 K, H2 and COS were found in the volatile reactants; no noticeable corrosion of the reactor wall has been detected. It has been established that addition of O2 to the H2S–CO2 mixture and its heating to 673 K leads to formation of ferrous sulfates. The mechanisms of the observed processes are discussed.  相似文献   

16.
V2O5-SiO2 hybrid material was fabricated by heat-treating a mixture of H2SiO3 and V2O5. SEM, TEM, XRD, and N2 isotherm analyses were performed to characterize the morphology and structure details of the as-prepared V2O5-SiO2. The possibility of using the as-prepared V2O5-SiO2 as anode material for aqueous lithium-ion batteries was investigated. Potentiostatic and galvanostatic results indicated that the intercalation/de-intercalation of Li+ in this material in aqueous electrolyte was quasi-reversible. It was also found that a discharge capacity of up to 199.1 mAh g?1 was obtained at a current density of 50 mA g?1 in aqueous solution of 1 M Li2SO4, a value which is much higher than the available reported capacities of vanadium (+5) oxides in aqueous electrolytes.  相似文献   

17.
A water-soluble fluorescent SO2 derivatives probe PI-SO 2 based on a phenanthroimidazole dye, and a sensitive SO2 recognition site, aldehyde was constructed. The probe PI-SO 2 exhibits desirable properties such as high sensitivity, high selectivity and good water-solubility. Significantly, we have demonstrated that the probe PI-SO 2 is suitable for rapidly fluorescence detecting of SO2 derivatives in aqueous solution and serum. The application of the novel probe PI-SO 2 proved that it was not only a useful tool for the detection of SO2 derivatives in vitro, but also a potential assay for investigating the effects of SO2 derivatives, and demonstrating its value in practical applicationin of complex biological samples.  相似文献   

18.
We have performed a first-principle calculation of the structural, electronic and high pressure properties of RuSr2GdCu2O8, a ferromagnetic superconductor, by employing a full-potential linearized augmented plane-wave method within the density-functional theory. The effect of pressure was achieved by varying the volume of the unit cell with constant a:b:c ratio. The experimentally observed anti-phase rotation of RuO6 octahedra has been attributed to the residual forces on ORu which results in shear strain in the RuO2 layer. Partial charge analysis shows that applying pressure up to 6 GPa leads to hole creation in the CuO2 sheets which causes increase in the superconducting transition temperature. We have estimated the Curie temperature T M of this compound in the mean-field approximation using Heisenberg model with first-nearest neighbor exchange interactions determined from DFT calculations for parallel and anti-parallel spin configurations of Ru moment in RuO2 planes. The effect of pressure causes the magnetic moment of Ru atoms to decrease due to the increase of hybridization between the adjacent Ru atoms. The calculated exchange splitting in Cu d x 2 - y 2 states increases slightly with pressure but it is still very small that it does not affect superconductivity, and the hole doping mechanism is dominant.  相似文献   

19.
The photochemistry of SO2 on thin epitaxial Ag films (5–60 nm) deposited on Si(100) has been studied using laser light with the wavelengths of 266, 355, and 532 nm. SO2 desorbs with cross sections of 1.7×10-19,1.7×10-20 and 2.9×10-21 cm2, respectively. The average translation energy, 〈Etrans/2k〉, is 440 K for 266 and 355 nm light, and 270 K for 532 nm light. Cross sections for a 60 nm thick Ag film are practically identical to the ones for Ag(111) as the substrate. An increase by a factor of ∼3.5 is observed when the film thickness is reduced to 5 nm for 266 and 355 nm light. No significant change is observed for 532 nm excitation. The film thickness has no significant influence on the translational energy of the photodesorbed molecules. The data are discussed in connection with the change of absorptivity of the metal film–semiconductor system. A model is put forward which takes into account the light absorption in the Si substrate and the reduced relaxation of excited electrons in Si. Modelling indicates that electrons excited in the Si substrate with energies and parallel momenta not allowed in Ag contribute to the surface chemistry after crossing the gap in the projected band structure of Ag(111). PACS 82.45.MP; 73.63.-b; 82.50.Bc  相似文献   

20.
Growth of K2SO4 crystals is studied in solution drops that have different initial heights and evaporate in different times. The dependences of the crystal size on the crystal growth time are obtained. The following three crystal growth modes are detected: rapid crystal growth in a supersaturated solution, a stop in the growth as a result of complete removal of supersaturation, and slow growth at a quasi-equilibrium solution concentration. The dispersities of the crystals that are retained at the bottom of the drop after complete evaporation of the solvent are calculated. A linear relation between the crystal dispersity and the reciprocal crystal growth time is revealed. The dispersity of K2SO4 crystals and the dispersity of the solid-solution dendrites in aluminum alloys are found to exhibit the same character of their dependences on the reciprocal crystal growth time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号