首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new type of graphene-Co3O4 functionalized porphyrin was synthesized and used for selective and sensitive detection of methyl parathion (MP). Co3O4 nanoparticles were firstly modified onto graphene oxide sheets and the porphyrin/Co3O4/graphene nanocomposites were then synthesized by self-assembly decoration of anion porphyrin on Co3O4-modified graphene sheets by π–π stacking. By dexterously controlling the electrochemical reduction variables and optimizing the electrode preparation parameters, with the satisfactory conductivity, strong adsorption toward MP, the developed novel sensor fabricated with the as-synthesized nano-assembly for determination of MP shows some satisfactory properties such as a wide linear concentration range (from 4.0?×?10?7 M to 2.0?×?10?5 M), low detection limit (1.1?×?10?8 M), favorable repeatability, long-time storage stability, and satisfactory anti-interference ability. It also had high precision for the real sample analysis, which indicated the good perspective for field application.  相似文献   

2.
A novel electrochemical sensor based on LaNi0.5Ti0.5O3/CoFe2O4 nanoparticle-modified electrode (LNT–CFO/GCE) for sensitive determination of paracetamol (PAR) was presented. Experimental conditions such as the concentration of LNT–CFO, pH value, and applied potential were investigated. Under the optimum conditions, the electrochemical performances of LNT–CFO/GCE have been researched on the oxidation of PAR. The electrochemical behaviors of PAR on LNT–CFO/GCE were investigated by cyclic voltammetry. The results showed that LNT–CFO/GCE exhibited excellent promotion to the oxidation of PAR. The over-potential of PAR decreased significantly on the modified electrode compared with that on bare GCE. Furthermore, the sensor exhibits good reproducibility, stability, and selectivity in PAR determination. Linear response was obtained in the range of 0.5 to 901 μM with a detection limit of 0.19 μM for PAR.  相似文献   

3.
A novel amperometric immunosensor was developed by immobilizing ferritin antibody (FeAb) on the surface of Fe3O4 magnetic nanoparticles/chitosan composite film modified glassy carbon electrode (GCE). This material combined the advantages of inorganic Fe3O4 nanoparticles with the organic polymer chitosan. The stepwise assembly procedure of the immunosensor was characterized by means of differential pulse voltammetry (DPV) and ac impedance. The K3Fe(CN)6/K4Fe(CN)6 was used as a marker to probe the interface and to determinate ferritin. The factors that could influence the performance of the resulting immunosensor were studied in detail. After the immunosensor was incubated with ferritin for 32 min at 35 °C, the DPV current decreased linearly with the logarithm of ferritin concentration in the range from 20 to 500 ng mL−1 with a correlation coefficient of 0.995 and a detection limit of 7.0 ng mL−1. This immunosensor was used to analyze ferritin in human serum samples. The analytical results showed that the developed immunoassay was comparable with the radioimmunoassay (RIA), and the studied immunosensor exhibited good accuracy, high sensitivity, and long-term stability for 3 weeks, which implies a promising alternative approach for detecting ferritin in clinical diagnosis.  相似文献   

4.
Fe3O4 nanorods and Fe2O3 nanowires have been synthesized through a simple thermal oxide reaction of Fe with C2H2O4 solution at 200–600°C for 1 h in the air. The morphology and structure of Fe3O4 nanorods and Fe2O3 nanowires were detected with powder X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The influence of temperature on the morphology development was experimentally investigated. The results show that the polycrystals Fe3O4 nanorods with cubic structure and the average diameter of 0.5–0.8 μm grow after reaction at 200–500°C for 1 h in the air. When the temperature was 600°C, the samples completely became Fe2O3 nanowires with hexagonal structure. It was found that C2H2O4 molecules had a significant effect on the formation of Fe3O4 nanorods. A possible mechanism was also proposed to account for the growth of these Fe3O4 nanorods. Supported by the Fund of Weinan Teacher’s University (Grant No. 08YKZ008), the National Natural Science Foundation of China (Grant No. 20573072) and the Doctoral Fund of Ministry of Education of China (Grant No. 20060718010)  相似文献   

5.
6.
The paper describes a sensitive method for simultaneous sensing of morphine (MOR) and diclofenac (DCF). The surface of a MgFe2O4/graphite paste electrode was modified with multi-walled carbon nanotubes, and the resulting sensor was characterized by cyclic voltammetry, differential pulse voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The electrode showed an efficient synergistic effect in term of oxidation of DCF and MOR, with sharp oxidation peaks occurring at +0.370 and 0.540 V (vs Ag/AgCl) at pH 7.0. The calibration plot for MOR is linear in the 50 nM to 920 μM concentration range, and the detection limit is 10 nM (at a signal-to-noise ratio of 3). The respective data for DCF are 100 nM to 580 μM, with a 60 nM LOD. The sensor was applied to the determination of MOR and DCF in spiked serum and urine samples, with recoveries ranging between 91.4 and 100.7 %.
Graphical abstract A sensitive method for simultaneous sensing of morphine (MOR) and diclofenac (DCF) is described. The surface of MgFe2O4/graphite paste electrode was modified with multi-walled carbon nanotubes, and the resulting sensor showed an efficient synergistic effect in terms of oxidation of DCF and MOR. The calibration plot for MOR is linear in the 50 nM to 920 μM concentration range, and the detection limit is 10 nM. The respective data for DCF are 100 nM to 580 μM, with a 60 nM LOD.
  相似文献   

7.
The exploration of substrate materials to construct electrochemical biosensors for glucose monitoring in the field of clinical diagnosis, especially for diabetes is still being investigated extensively. In this paper, NiO/Fe2O3 nanocomposites are designed and synthesized by two-step hydrothermal approach in combination with calcinations. The morphology and microstructure are studied by SEM, XRD, XPS, and TEM systematically. Optimized NiO/Fe2O3 nanocomposites are employed as substrate to construct glucose biosensors, and the electrochemical properties are carried out by cyclic voltammetric and chronoamperometric techniques. The results indicate as-prepared biosensors achieve a high sensitivity of 230.5 μA cm?2 mM?1, wide linear range between 50 and 2867 μM, and low detection limit of 3.9 μM towards glucose detection. The synergistic effect between NiO and Fe2O3 as substrate to construct glucose biosensors is elucidated. The selectivity is acceptable based on the detection of glucose concentration for diabetics.  相似文献   

8.
The compound, lithium trivanadate (LiV3O8), was synthesized by the polymer precursor method, using the polymer polyvinylpyrrolidone. The electrochemical performance of LiV3O8 was compared with LiV3O8 synthesized by the solid state reaction method. The prepared compounds were characterized by X-ray diffraction, scanning electron microscopy, and high-resolution transmission electron microscopy techniques. The electrochemical performances were studied by cyclic voltammetry and galvanostatic cycling in the voltage range of 2.0 to 4.0 V at room temperature (25 °C). The compound prepared by the polymer precursor method was found to have a good cycling stability. A reversible capacity value of 203 mAh/g (2.18 mol of Li) and 170 mAh/g (1.83 mol of Li) was obtained at the end of the 70th cycle, at a current density of 30 and 120 mA/g, respectively.  相似文献   

9.
A new approach to the synthesis of hybrid nanoparticles based on magnetic Fe3O4 nanoparticles and CdS quantum dots, combining magnetic and luminescence properties, has been suggested. Conditions for preparation of their stable aqueous suspensions have been found, and their optical properties have been studied. Nanocomposites produced at the molar ratio Fe3O4: CdS = 5: 1, which exhibited the luminescence properties) and gave stable aqueous suspensions, have turned out to be most promising. The results are evidence that the synthesized nanoparticles can be used for the development of visualizing agents for in vitro biomedical research.  相似文献   

10.
In this study, a three-component nanocomposite consisted of graphene, manganese ferrite and phosphotungstic acid (PTA) has been prepared. This composite, which is designated as Graphene/MnFe2O4@PTA, was synthesized through anchoring of PTA–imidazolium ionic liquid on magnetic graphene sheets. The structural and magnetic properties of the fabricated nanocomposite were studied by employing FT-IR, SEM, EDX, TEM, ICP, VSM, P-XRD and BET techniques. The synthesized magnetic nanocomposite was examined as an efficient and recyclable acidic catalyst for Mannich reaction under solvent-free conditions. The products of this reaction, which are an important class of potentially bioactive compounds, were obtained with good to excellent yields, and the catalyst could be readily recycled without any significant loss of its activity.  相似文献   

11.
Transition metal catalysts have been considerably used for NH3 decomposition because of the potential application in COx-free H2 generation for fuel cells. However, most transition metal catalysts prepared via traditional synthetic approaches performed the inferior stability due to the agglomeration of active components. Here, we adopted an efficient method, aerosol-assisted self-assembly approach (AASA), to prepare the optimized cobalt-alumina (Co3O4-Al2O3) catalysts. The Co3O4-Al2O3 catalysts exhibited excellent catalytic performance in the NH3 decomposition reaction, which can reach 100% conversion at 600 °C and maintain stable for 72 h at a gaseous hourly space velocity (GHSV) of 18000 cm3 gcat?1 h?1. The catalysts were characterized by various techniques including transmission electron microscope (TEM), scanning electron microscope (SEM), nitrogen sorption, temperature-programmed reduction by hydrogen (H2-TPR), ex-situ/in-situ Raman and ex-situ/in-situ X-ray diffraction (XRD) to obtain the information about the structure and property of the catalysts. H2-TPR and in-situ XRD results show that there is strong interaction between the cobalt and alumina species, which influences the redox properties of the catalysts. It is found that even a low content of alumina (10 at%) is able to stabilize the catalysts due to the adequate dispersion and rational interaction between different components, which ensures the high activity and superior stability of the cobalt-alumina catalysts.  相似文献   

12.
In this work, a facile ultrasonic-assisted method was applied for preparation of Fe3O4/Ag3VO4 nanocomposites with different compositions. The as-prepared products were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy-dispersive analysis of X-rays, UV–Vis diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometery. Photocatalytic degradation of rhodamine B under visible-light irradiation was investigated, and it was found that weight ratio of Fe3O4–Ag3VO4 has significant influence on the photocatalytic activity and the nanocomposite with 1:4 weight ratio of Fe3O4–Ag3VO4 has superior activity. In addition, the nanocomposite showed great activities in degradations of methylene blue and fuchsine, which are comparable with activity of the pure Ag3VO4. More importantly, this nanocomposite displayed remarkable saturation magnetization, leading to easily and quickly separation of its suspension from treated system by applying a magnetic field.  相似文献   

13.
Mn3O4 and Mn3O4 (140)/CNTs have been investigated as high-capacity anode materials for lithium-ion batteries (LIBs) applications. Nanoparticle Mn3O4 samples were synthesized by hydrothermal method using Mn(Ac)2 and NH3·H2O as the raw materials and characterized by XRD, TG, EA, TEM, and SEM. Its electrochemical performances, as anode materials, were evaluated by galvanostatic discharge-charge tests. The Mn3O4 (140)/CNTs displays outstanding electrochemical performances, such as high initial capacity (1942 mAh g?1), stable cycling performance (1088 mAh g?1 and coulombic efficiency remain at 97% after 60 cycles) and great rate performance (recover 823 mAh g?1 when return to initial current density after 44 cycles). Compared to pure Mn3O4 (140), the improving electrochemical performances can be attributed to the existence of very conductive CNTs. The Mn3O4 (140)/CNTs with excellent electrochemical properties might find applications as highly effective materials in electromagnetism, catalysis, microelectronic devices, etc. The process should also offer an effective and facile method to fabricate many other nanosized metallic oxide/CNTs nanocomposites for low-cost, high-capacity, and environmentally benign materials for LIBs.  相似文献   

14.
The interaction between stabilizers and nanoparticles is one of the important factors to prepare stable magnetic fluids. The magnetic nano-size Fe3O4 core with single domain and the average grain size around 8–12 nm were prepared by chemical precipitation method. The O/Fe molar ratio of the particle surface was measured by X-ray photoelectron spectroscopy (XPS). The heat effects of stabilizers adsorption on nanoparticles were measured by solution calorimetry. The excess amount of oxygen was possibly the result of the hydroxygen formed on the surface of the nanoparticles. The heat effects showed that compounds containing carboxyl groups can be adsorbed chemically on magnetite by forming chemical bonds. The other stabilizers involving NH-groups, such as polyethylene-imine, can be adsorbed physically. The exothermic value is about half of the former case. Supported by the National Natural Science Foundation of China (Grant No. 50476039), and Guangdong Provincial Department of Science and Technology (Grant No. 2004A10-703001)  相似文献   

15.
The authors report on the preparation of a hollow-structured cobalt ferrite (CoFe2O4) nanocomposite for use in a non-enzymatic sensor for hydrogen peroxide (H2O2). Silica (SiO2) nanoparticles were exploited as template for the deposition of Fe3O4/CoFe2O4 nanosheets, which was followed by the removal of SiO2 template under mild conditions. This leads to the formation of hollow-structured Fe3O4/CoFe2O4 interconnected nanosheets with cubic spinel structure of high crystallinity. The material was placed on a glassy carbon electrode where it acts as a viable sensor for non-enzymatic determination of H2O2. Operated at a potential of ?0.45 V vs. Ag/AgCl in 0.1 M NaOH solution, the modified GCE has a sensitivity of 17 nA μM?1 cm?2, a linear response in the range of 10 to 1200 μM H2O2 concentration range, and a 2.5 μM detection limit. The sensor is reproducible and stable and was applied to the analysis of spiked urine samples, where it provided excellent recoveries.
Graphical abstract Schematic of a cobalt ferrite (CoFe2O4) hollow structure for use in electrochemical determination of H2O2. The sensor shows a low detection limit, a wide linear range, and excellent selectivity for H2O2.
  相似文献   

16.
As the solubility is a direct measure of stability, this study compares the solubilities of ZnFe2O4, Fe3O4 and Fe2O3 in high temperature water. Through literature analysis and formula derivation, it is shown that it is reasonable to assume ZnFe2O4 and Fe(OH)3 coexist when ZnFe2O4 is dissolved in water. Results indicated that the solubility of ZnFe2O4 is much lower than that of Fe2O3 or Fe3O4. The low solubility of ZnFe2O4 indicates that it is more protectively stable as an anticorrosion phase. Moreover, the gap between the solubility of ZnFe2O4 and that of Fe3O4 or Fe2O3 was enlarged with an increase of temperature. This means that ZnFe2O4 is more protective at higher temperatures. Further analysis indicated that with the increase of temperature, the solubility of ZnFe2O4 changed little while those of Fe2O3 or Fe3O4 changed a lot. Little change of the solubility of ZnFe2O4 with increase of temperature showed that ZnFe2O4 is stable. The very low and constant solubility of ZnFe2O4 suggests that it is more protective than Fe2O3 and Fe3O4, especially in water at higher temperature.  相似文献   

17.
Peculiarities of electrochemical behavior of the Fe3O4 magnetic nanoparticles immobilized on the surface of a platinum electrode in aprotic organic media were investigated. Possible scheme of electrochemical behavior of nanoparticles depending on pre-electrolysis potential (–1.3,–2.5 V) was suggested. The effect of pre-electrolysis time, potential scan rate and nature of supporting electrolyte on the processes investigated was determined. A linear dependence of electrochemical oxidation signal versus the concentration of nanoparticles in modifying suspension in the concentration range of 0.05—0.5 g L–1 was observed. The results of the performed research allow using magnetite nanoparticles as a direct signal-generating label in electrochemical immunoassay.  相似文献   

18.
A physicochemical study of glasses based on the MO-Bi2O3-B2O3 and SrO-Bi2O3-B2O3 systems was performed. Glass formation regions were found. The structural and optical properties, as well as the thermal behavior of the glasses, were studied.  相似文献   

19.
Uniform spinel ferrite CoFe2O4 nanoparticles with average diameter of 40 nm were fabricated by a novel glycol-assisted autocombustion method. The as-prepared powders were characterized by X-ray diffraction, transmission electron microscopy and Raman spectrum. The room temperature magnetic property of the nanoparticles was examined, indicating the presence of an ordered magnetic structure in the spinel system. The electrochemical tests show that the as-prepared nanoparticles exhibits excellent electrochemical cycleability. The simple synthetic route can be applied to as a general method for the fabrication of other functional nanomaterials.  相似文献   

20.
Adsorption characteristics and doxycycline (DC) removal efficiency of Fe3O4 magnetic nanoparticles as adsorbents have been determined by investigating the effects of pH, concentration of the DC, amount of adsorbents, contact time, ionic strength and temperature. The mechanism of adsorption was also studied. The adsorption of DC to the Fe3O4 magnetic nanoparticles could be described by Langmuir-type adsorption isotherms. Short contact time between the reagents, reusability of Fe3O4 for three times after recycling of the nanoparticles, good precision and accuracy, wide working pH range and high breakthrough volume are among the highlights of this procedure. The proposed extraction and determination procedure based on magnetic nanoparticles as adsorbent was successfully applied to the determination of DC spiked in honey and various water samples. The method presented here is fast, simple, cheap and robust, and it does not require the use of organic solvents. Also, the method needs only a magnet and can be performed in any laboratory without sophisticated equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号