首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
We studied a rapid, sensitive and selective amperometric sensor for determination of hydrogen peroxide by electrodeposited Ag NPs on a modified glassy carbon electrode (GCE). The modified GCE was constructed through a step by step modification of magnetic chitosan functional composite (Fe3O4–CH) and high-dispersed silver nanoparticles on the surface. The resulted Ag@Fe3O4–CH was characterized by various analytical methods including Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, scanning electron microscopy and cyclic voltammetry. The proposed sensor employed Ag@Fe3O4–CH/GCE as the working electrode with a linear current response to the hydrogen peroxide concentration in a wide range from 0.01 to 400 µM with a low limit of detection (LOD = 0.0038 µM, S/N = 3). The proposed sensor showed superior reproductivity, sensitivity and selectivity for the detection of hydrogen peroxide in environmental and clinical samples.  相似文献   

2.
We describe a simple method for preparing Au‐TiO2/graphene (GR) nanocomposite by deposition of Au nanoparticles (NPs) on TiO2/GR substrates. The as‐prepared Au‐TiO2/GR was characterized by X‐ray diffraction (XRD) and transmission electron microscopy (TEM). The presence of Au NPs on TiO2/GR surface remarkably improves the electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2) and β‐nicotinamide adenine dinucleotide (NADH). The Au‐TiO2/GR modified glassy carbon (GC) electrode exhibits good amperometric response to H2O2 and NADH, with linear range from 10 to 200 µM and 10 to 240 µM, and detection limit of 0.7 and 0.2 µM, respectively.  相似文献   

3.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

4.
Herein, platinum nanoparticles-decorated molybdenum disulfide(Pt NPs@MoS_2) nanocomposite has been synthesized via a microwave-assisted hydrothermal method, which was characterized by transmission electron microscopy(TEM) and powder X-ray diffraction(XRD). This MoS_2-based nanocomposite modified glass carbon electrode(Pt NPs@MoS_2/GCE) exhibited excellent electrocatalytic activity toward dopamine(DA) and uric acid(UA) due to their synergistic effect. Two well-defined oxidation peaks of DA and UA were obtained at Pt NPs@MoS_2/GCE with a large peak separation of 160 m V(DA-UA), suggesting that the modified electrode could individually or simultaneously analyze DA and AA. Under the optimal conditions, the peak currents of DA and UA were linearly dependent on their concentrations in the range of 0.5–150 and 5–1000 mmol/L with detection limit of 0.17 and 0.98 mmol/L, respectively. The proposed MoS_2-based sensor can also be employed to examine DA and UA in real samples with satisfactory results. Therefore, the Pt NPs@MoS_2 nanocomposite might offer a good possibility for electrochemical sensing and other electrocatalytic applications.  相似文献   

5.
In this study, a new strategy for the preparation of a modified glassy carbon electrode (GCE) based on a novel nano-sensing layer for the electrocatalytic oxidation of hydrazine was suggested. The suggested nano-sensing layer was prepared with the immobilisation of silver nanoparticles (AgNPs) on ordered mesoporous carbon. The morphology and properties of the prepared nanocomposite on the surface of GCE were characterised by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption, X-ray powder diffraction and electrochemical impedance spectroscopy. The electrochemical response characteristics of the modified electrode towards the target analyte were investigated by cyclic voltammetry. Under optimal experimental conditions, the suggested modified GCE showed excellent catalytic activity towards the electro-oxidation of hydrazine (pH = 7.5) with a significant increase in anodic peak currents in comparison with the unmodified GCE. By differential pulse voltammetry and amperometric methods, the suggested sensor demonstrated wide dynamic concentration ranges of 0.08–33.8 µM and 0.01–128 µM with the detection limit (S/N = 3) of 0.027 and 0.003 µM for hydrazine, respectively. The suggested hydrazine sensor was successfully applied for the highly sensitive determination of hydrazine in different real samples with satisfactory results.  相似文献   

6.
A novel sandwich-structured nanocomposite based on Ti2NbO7? nanosheets and cobalt porphyrin (CoTMPyP) was fabricated through electrostatic interaction, in which CoTMPyP has been successfully inserted into the lamellar spacing of layered titanoniobate. The resultant Ti2NbO7/CoTMPyP nanocomposite was characterized by XRD, SEM, TEM, EDS, FT-IR, and UV-vis. It is demonstrated that the intercalated CoTMPyP molecules were found to be tilted approximately 63° against Ti2NbO7? layers. The glass carbon electrode (GCE) modified by Ti2NbO7/CoTMPyP film showed a fine diffusion-controlled electrochemical redox process. Furthermore, the Ti2NbO7/CoTMPyP-modified electrode exhibited excellent electrocatalytic oxidation activity of ascorbic acid (AA). Differential pulse voltammetric studies demonstrated that the intercalated nanocomposite detects AA linearly over a concentration range of 4.99?×?10?5 to 9.95?×?10?4 mol L?1 with a detection limit of 3.1?×?10?5 mol L?1 at a signal-to-noise ratio of 3.0.  相似文献   

7.
A novel voltammetric biosensor based on nano‐TiO2/nafion/carbon nanoparticles modified glassy carbon electrode (TiO2/N/CNP/GCE) was developed for the determination of dobutamine (DBA). Characterization of the surface morphology and property of TiO2/N/CNP layer was carried out by the scanning electron microscopy and atomic force microscopy. The electrochemical performance of the modified electrode was investigated by means of the cyclic voltammetry, differential pulse voltammetry and electrochemical impedance spectroscopy techniques. Effective experimental variables, such as the scan rate, pH of the supporting electrolyte, drop size of the casted modifier suspension and accumulation conditions of DBA on the surface of TiO2/N/CNP/GCE were optimized. Under the optimized conditions, a significant electrochemical improvement was observed toward the electro‐oxidation of DBA on the surface of TiO2/N/CNP/GCE compared to the bare GCE. Under the optimized conditions, a wide linear dynamic range (6 nM–1 µM) with a low detection limit of 2 nM for DBA was resulted. The prepared modified electrode shows high sensitivity, stability and good reproducibility in the determination of DBA concentrations. Satisfactory results were obtained for DBA analysis in the pharmaceutical and clinical preparations using TiO2/N/CNP/GCE.  相似文献   

8.
A novel electrochemical sensor based on iron tungstate doped tin oxide nanocomposite Nafion (FeWO4/SnO2/Nf) immobilized modified glassy carbon electrode (GCE) is fabricated to determine hydroquinone (HQ) in this present study. The structural morphology and phase of FeWO4/SnO2 nanocomposite are characterized by X-ray powder diffraction (XRD), energy dispersive X-ray analysis (EDX), Fourier transform infrared spectroscopy (FT-IR), high transmission electron microscopy (HR-TEM) and Field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and X-ray photoelectron spectroscopy (XPS) respectively. Electrochemical methods such as cyclic voltammetry (CV), difference pulse voltammetry (DPV) and amperometric (i-t curve) are used to describe the electrochemical performance of the surface modified electrode for HQ sensing studies. The FeWO4/SnO2/Nf immobilized GCE is exhibited excellent catalytic activity with the increasing current signal during HQ sensing. The linear range of response is obtained between 0.01 µM and 50 µM for HQ detection under optimized conditions and the low detection limit (LOD) is found to be 0.0013 µM. Moreover, the present modified electrode shows good reproducibility and excellent anti-interference behavior. In addition, the present electrochemical sensor is applied to the real samples of collected waters from various sources and the obtained experimental results are quite satisfactory.  相似文献   

9.
This paper describes a highly sensitive and selective electrochemical sensing of folic acid (FA) using vanadium pentoxide decorated graphene carbon nitride covalently grafted polyvinyl alcohol modified GC electrode (V2O5/G-C3N4/PVA/GCE). The V2O5/G-C3N4/PVA nanocomposite was synthesized by an in-situ oxidative polymerization method and characterized by various techniques such as UV–visible, Raman, FE-SEM, XRD, FT-IR, EDX, HR-TEM, SAED, and electrochemical methods. The V2O5/G-C3N4/PVA nanocomposite modified GCE showed superior electrocatalytic activity towards the FA detection. The superior electrochemical activity of the catalyst is owing to good conductivity, high surface area and enhanced electron transfer efficiency of the nanocomposite. The amperometric (i-t) studies revealed that the V2O5/G-C3N4/PVA nanocomposite modified GCE performed well by attaining a linear response of FA from 0.01 to 60 µM with a lower detection limit 0.00174 µM and the sensitivity of 19.02 μA µM−1 cm−2. Meanwhile, the V2O5/G-C3N4/PVA nanocomposite modified GCE exhibited good selectivity, rapid and stable response towards FA. The proposed method has been successfully applied for the selective determination of FA in various real samples such as apple juice, green tea and tap water with samples with good recoveries.  相似文献   

10.
Based on hemin‐MWCNTs nanocomposite and hemin‐catalyzed luminol‐H2O2 reaction, a sensitive electrogenerated chemiluminescence (ECL) cholesterol biosensor was proposed in this paper. Firstly, hemin‐MWCNTs was prepared via π–π stacking and modified on the surface of GCE. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the modified electrode to achieve a cholesterol biosensor. Hemin‐MWCNTs nanocomposite provided the electrode with a large surface area to load ChOx, and endowed the nanostructured interface on the electrode surface to enhance the performance of biosensor. The biosensor responded to cholesterol in the linear range from 0.3 µM to 1.2 mM with a detection limit of 0.1 µM (S/N=3).  相似文献   

11.
The electrochemical oxidation of morphine (MO) and codeine (COD) has been investigated by the application of a novel glassy carbon electrode modified with a hydroxyapatite-Fe3O4 nanoparticles/multiwalled carbon nanotubes composite (HA-FeNPs-MWCNTs/GCE). The modified electrode worked as an efficient sensor for simultaneous determination of MO and COD in the presence of uric acid. Response surface methodology was utilized to optimize the voltammetric response of the modified electrode for the determination of MO and COD. The amount of HA-FeNPs in the modifier matrix (%HA-FeNPs), the solution pH and the accumulation time were chosen as the three important operating factors through the experimental design methodology. The central composite design as a response surface approach was applied for obtaining the optimum conditions leading to maximum oxidation peak currents for MO and COD. The differential pulse voltammetry results showed that the obtained anodic peak currents were linearly proportional to concentration in the range of 0.08–32 µM with a detection limit (S/N = 3.0) of 14 nM for MO and in the range of 0.1–28 µM and with a detection limit of 22 nM for COD. The proposed method was successfully applied to determine these compounds in human urine and blood serum samples.  相似文献   

12.
Electrocatalytic oxidation of sulfide ion on a glassy carbon electrode (GCE) modified with multiwall carbon nanotubes (MWCNTs) and a copper (II) complex was investigated. The Cu(II) complex was used due to the reversibility of the Cu(II)/Cu(III) redox couple. The MWCNTs are evaluated as a transducer, stabilizer and immobilization matrix for the construction of amperometric sensor based on Cu(II) complex adsorbed on MWCNTs immobilized on the surface of GCE. The modified GCE was applied to the selective amperometric detection of sulfide at a potential of 0.47 V (vs. Ag/AgCl) at pH 8.0. The calibration graph was linear in the concentration range of 5 µM–400 µM; while the limit of detection was 1.2 µM, the sensitivity was 34 nA µM?1. The interference effects of SO3 2?, SO4 2?, S2O3 2?, S4O6 2?, Cysteine, and Cystein were negligible at the concentration ratios more than 40 times. The modified electrode is more stable with time and more easily restorable than unmodified electrode surface. Also, modified electrode permits detection of sulfide ion by its oxidation at lower anodic potentials.   相似文献   

13.
We describe a chemical exfoliation method for the preparation of MoS2 nanosheets. The nanosheets were incorporated into poly(3,4-ethylenedioxythiophene) (PEDOT) by electrodeposition on a glassy carbon electrode (GCE) to form a nanocomposite. The modified GCE is shown to enable simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA). Due to the synergistic effect of MoS2 and PEDOT, this electrode displays better properties in terms of electrocatalytic oxidation of AA, DA and UA than pure PEDOT, which is illustrated by cyclic voltammetry and differential pulse voltammetry (DPV). Under optimum conditions and at pH 7.4, the respective sensitivities and best working potentials are as follows: AA: 1.20 A?mM?1?m?2, 30 mV; DA: 36.40 A?mM?1?m?2, 210 mV; UA: 105.17 A?mM?1?m?2, 350 mV. The calculated detection limits for AA, DA and UA are 5.83 μM, 0.52 μM and 0.95 μM, respectively. The modified electrode was applied to the detection of the three species in human urine samples and gave satisfactory results.
Graphical abstract MoS2 nanosheets were prepared by a facile chemical exfoliation method. MoS2 and poly(3,4-ethylenedioxythiophene) nanocomposite modified glassy carbon electrodes were fabricated, which are shown to enable simultaneous determination of ascorbic acid, dopamine and uric acid with high sensitivity and selectivity.
  相似文献   

14.
《Analytical letters》2012,45(7):1236-1247
Abstract

The 6-ferrocenylhexanethiol (FcC6SH) functionalized multiwall carbon nanotubes (MWNTs) modified glassy carbon electrode (FcC6SH/MWNTs/GCE) was easily fabricated and used for the sensitive detection of NADH. Cyclic voltammetric and amperometric methods were used to study the behavior of NADH on the FcC6SH/MWNTs/GCE. A broader linear response range to the NADH concentration from 5 µM to 1.5 mM with a correlation coefficient of 0.9982 was obtained. The detection limit was 0.54 µM. The synergetic effects of FcC6SH and MWNTs make the modified electrode highly sensitive to NADH. In addition, the modified electrode can decrease the fouling of the electrode surface.  相似文献   

15.
In this paper electropolymerization of a thin film of para‐phenylenediamine (PPD) is studied at glassy carbon electrode (GCE) in sulfuric acid media by cyclic voltammetry. The results showed that this polymer was conducting and had a reproducible redox couple in the potential region from 0.0 to 0.4 V in phosphate buffer solution. This modified GCE (p‐PPD‐GCE) was applied for simultaneous determination of ascorbic acid (AA), dopamine (DA) and uric acid (UA) using differential pulse voltammetry (DPV). The p‐PPD‐GCE in 0.1 M phosphate buffer solution (pH 5.0) separated the DPV signals of AA, DA and UA with sufficient potential differences between AA–DA and DA–UA and also enhanced their oxidation peak currents. The oxidation currents were increased from 2.0 to 2000.0 µM for AA, 10.0 to 1250.0 µM for DA and 50.0 to 1600.0 µM for UA. The detection limits were evaluated as 0.4, 1.0 and 2.5 µM for AA, DA and UA, respectively (S/N=3).  相似文献   

16.
A novel electrochemical sensor based on LaNi0.5Ti0.5O3/CoFe2O4 nanoparticle-modified electrode (LNT–CFO/GCE) for sensitive determination of paracetamol (PAR) was presented. Experimental conditions such as the concentration of LNT–CFO, pH value, and applied potential were investigated. Under the optimum conditions, the electrochemical performances of LNT–CFO/GCE have been researched on the oxidation of PAR. The electrochemical behaviors of PAR on LNT–CFO/GCE were investigated by cyclic voltammetry. The results showed that LNT–CFO/GCE exhibited excellent promotion to the oxidation of PAR. The over-potential of PAR decreased significantly on the modified electrode compared with that on bare GCE. Furthermore, the sensor exhibits good reproducibility, stability, and selectivity in PAR determination. Linear response was obtained in the range of 0.5 to 901 μM with a detection limit of 0.19 μM for PAR.  相似文献   

17.
The mixed‐valent nickel hexacyanoferrate (NiHCF) and poly(3,4‐ethylenedioxythiophene) (PEDOT) hybrid film (NiHCF‐PEDOT) was prepared on a glassy carbon electrode (GCE) by multiple scan cyclic voltammetry. The films were characterized using atomic force microscopy, field emission scanning electron microscopy, energy dispersive spectroscopy, X‐ray diffraction, and electrochemical impedance spectroscopy (AC impedance). The advantages of these films were demonstrated for the detection of ascorbic acid (AA) using cyclic voltammetry and amperometric techniques. The electrocatalytic oxidation of AA at different electrode surfaces, such as the bare GCE, the NiHCF/GCE, and the NiHCF‐PEDOT/GCE modified electrodes, was determined in phosphate buffer solution (pH 7). The AA electrochemical sensor exhibited a linear response from 5×10−6 to 1.5×10−4 M (R2=0.9973) and from 1.55×10−4 to 3×10−4 M (R2=0.9983), detection limit=1×10−6 M, with a fast response time (3 s) for AA determination. In addition, the NiHCF‐PEDOT/GCE was advantageous in terms of its simple preparation, specificity, stability and reproducibility.  相似文献   

18.
Prussian blue nanoparticles (PBNPs) were prepared by a self‐assembly process on a glassy carbon electrode (GCE) modified with poly(o‐phenylenediamine) (PoPD) film. The stepwise fabrication process of PBNP‐modified PoPD/GCE was characterized using scanning electron microscopy and electrochemical impedance spectroscopy. The prepared PBNPs showed an average size of 70 nm and a homogeneous distribution on the surface of the modified electrode. The PBNPs/PoPD/GCE showed electrocatalytic activity towards the oxidation of pyridoxine (PN) and was used as an amperometric sensor. The modified electrode exhibited a linear response for PN oxidation over the concentration range 3–38.5 μM with a detection limit of ca 6.10 × 10?7 M (S/N = 3) and sensitivity of 2.79936 × 103 mA M?1 cm?2 using an amperometric method. The mechanism and kinetics of the catalytic oxidation reaction of PN were investigated using cyclic voltammetry and chronoamperometry. The values of α, kcat and D were estimated as 0.36, 1.089 × 102 M?1 s?1 and 8.9 × 10?5 cm2 s?1, respectively. This sensor also exhibited good anti‐interference and selectivity. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
In this work, the modified carbon paste electrode (CPE) with an imidazole derivative 2‐(2,3 dihydroxy phenyl) 4‐methyl benzimidazole (DHPMB) and reduced graphene oxide (RGO) was used as an electrochemical sensor for electrocatalytic oxidation of N‐acetyl‐L‐cysteine (NAC). The electrocatalytic oxidation of N‐acetyl‐L‐cysteine on the modified electrode surface was then investigated, indicating a reduction in oxidative over voltage and an intensive increase in the current of analyte. The scan rate potential, the percentages of DHPMB and RGO, and the pH solution were optimized. Under the optimum conditions, some parameters such as the electron transfer coefficient (α) between electrode and modifier, and the electron transfer rate constant) ks) in a 0.1 M phosphate buffer solution (pH=7.0) were obtained by cyclic voltammetry method. The diffusion coefficient of species (D) 3.96×10?5 cm2 s?1 was calculated by chronoamperometeric technique and the Tafel plot was used to calculate α (0.46) for N‐ acetyl‐L‐cysteine. Also, by using differential pulse voltammetric (DPV) technique, two linear dynamic ranges of 2–18 µM and 18–1000 µM with the detection limit of 61.0 nM for N‐acetyl‐L‐cysteine (NAC) were achieved. In the co‐existence system of N‐acetyl‐L‐cysteine (NAC), uric acid (UA) and dopamine (DA), the linear response ranges for NAC, UA, and DA are 6.0–400.0 µM, 5.0–50.0 µM and 2.0–20.0 µM, respectively and the detection limits based on (C=3sb/m) are 0.067 µM, 0.246 µM and 0.136 µM, respectively. The obtained results indicated that DHPMB/RGO/CPE is applicable to separate NAC, uric acid (UA) and dopamine (DA) oxidative peaks, simultaneously. For analytic performance, the mentioned modified electrode was used for determination of NAC in the drug samples with acceptable results, and the simultaneous determination of NAC, UA and DA oxidative peaks was investigated in the serum solutions, too.  相似文献   

20.
The present study describes the fabrication of a sensitive amperometric sensor for the determination of persulfate. The immobilization surface was prepared by modifying a glassy carbon (GC) electrode with a nanocomposite containing ruthenium oxide (RuOx) nanoparticles and thionine (TH) or celestin blue (CB). The modified electrodes indicated excellent electrocatalytic activity toward persulfate reduction at a potential of +0.1 V. The proposed sensor showed detection limits of 1.46 µM for the GC/RuOx/TH modified electrode and 2.64 µM for the GC/RuOx/CB modified electrode. The sensitivities were obtained as 3 nA µM?1 at a concentration range of 10 µM to 11 mM for the GC/RuOx/TH modified electrode and 1 nA µM?1 at a concentration range of 10 µM to 6 mM for the GC/RuOx/CB modified electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号