首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Biogas from anaerobic digestion of organic materials is a renewable energy resource that consists mainly of CH4 and CO2. Trace components that are often present in biogas are water vapor, hydrogen sulfide, siloxanes, hydrocarbons, ammonia, oxygen, carbon monoxide, and nitrogen. Considering the biogas is a clean and renewable form of energy that could well substitute the conventional source of energy (fossil fuels), the optimization of this type of energy becomes substantial. Various optimization techniques in biogas production process had been developed, including pretreatment, biotechnological approaches, co-digestion as well as the use of serial digester. For some application, the certain purity degree of biogas is needed. The presence of CO2 and other trace components in biogas could affect engine performance adversely. Reducing CO2 content will significantly upgrade the quality of biogas and enhancing the calorific value. Upgrading is generally performed in order to meet the standards for use as vehicle fuel or for injection in the natural gas grid. Different methods for biogas upgrading are used. They differ in functioning, the necessary quality conditions of the incoming gas, and the efficiency. Biogas can be purified from CO2 using pressure swing adsorption, membrane separation, physical or chemical CO2 absorption. This paper reviews the various techniques, which could be used to optimize the biogas production as well as to upgrade the biogas quality.  相似文献   

2.
The permeation of CO2 and CH4 and their binary mixtures through a DDR membrane has been investigated over a wide range of temperatures and pressures. The synthesized DDR membrane exhibits a high permeance and maintains a very high selectivity for CO2. At a total pressure of 101 kPa, the highest selectivity for CO2 in a 50∶50 feed mixture was found to be over 4000 at 225 K. This is ascribed to the higher adsorption affinity, as well as to the higher mobility for the smaller CO2 molecules in the zeolite, preventing the bypassing of the CH4 through the membrane. An engineering model, based on the generalized Maxwell-Stefan equations, has been used to interpret the transport phenomena in the membrane. The feasibility of DDR membranes as applied to CO2 removal from natural gas or biogas is anticipated.  相似文献   

3.
Since many years synthetic membranes have been used in reverse osmosis or ultrafiltration for the separation of aqueous mixtures. More recently the separation of gases and vapors by selective membrane permeation has gained significant technical and commercial interest. The recovery of hydrogen from petrochemical purge gases and ammonia production processes or the removal of CO2 from natural gas by selective membrane permeation are today state of the art procedures. The recovery of organic solvents from waste air streams is another very promising application of synthetic membranes. In this paper the main parameters determining the performance of a membrane in gas and vapor separation are described. The requested intrinsic properties of the polymer to be useful as a barrier for a selective gas and vapor transport are discussed. The preparation of appropriate membranes is described. Their performance in practicle applications is illustrated in selected examples.  相似文献   

4.
CO2-induced plasticization may significantly spoil the membrane performance in high-pressure CO2/CH4 separations. The polymer matrix swells upon sorption of CO2, which accelerates the permeation of CH4. The polymer membrane looses its selectivity. To make membranes attractive for, for example, natural gas upgrading, plasticization should be minimized. In this article we study a polymer membrane stabilization by a semiinterpenetrating polymer network (s-ipn) formation. For this purpose, the polyimide Matrimid 5218 is blended with the oligomer Thermid FA-700 and subsequently heat treated at 265°C. Homogeneous films are prepared with different Matrimid/Thermid ratios and different curing times. The stability of the modified membrane is tested with permeation experiments with pure CO2 as well as CO2/CH4 gas mixtures. The original membrane shows a minimum in its permeability vs. pressure curves, but the modified membranes do not indicating suppressed plasticization. Membrane performances for CO2/CH4 gas mixtures showed that the plasticizing effect indeed accelerates the permeation of methane. The modified membrane clearly shows suppression of the undesired methane acceleration. It was also found that just blending Matrimid and Thermid was not sufficient to suppress plasticization. The subsequent heat treatment that results in the s-ipn was necessary to obtain a stabilized permeability. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1547–1556, 1998  相似文献   

5.
A dynamic method for investigating the mechanism of permeation and diffusion through polymers has been explored. The permeation cell consists of two compartments separated by the membrane. The permeant (gas, vapor, or liquid) is introduced into one compartment; a carrier gas (helium) flows at constant rate through the other and sweeps the permeant which diffuses through the membrane to the thermal conductivity detector. Both compartments are at atmospheric pressure; thus no or little membrane support is required, and leakage problems are minimal. Moreover, the same membrane can be used over a wide temperature range and for diverse permeants. The detector signal is at any instant proportional to the permeation rate. A simple mathematical formalism for deriving the diffusion coefficient from the transient permeation rates has been developed. The measured diffusion and permeability coefficients of CO2, O2, and N2 through low-density polyethylene closely agree with literature values. Permeation of hexane and benzene through polyethylene follows a complex diffusion law, and the rate depends on the thermal history of the system. The dynamic method is particularly suited to the study of transitions in polymers. Changes in permeation rates, usually occurring at transition points, can easily be discovered by slow temperature scanning of the system.  相似文献   

6.
A new microporous amino-functionalized metal-organic framework has been synthesized by direct self-assembly, which exhibits high moisture-stability, acceptable capacity, and unprecedented high selectivity for CO(2) over CH(4), suggesting its potential application in gas separation processes like natural gas and biogas upgrading.  相似文献   

7.
Concentration polarization affects almost all the membrane separation processes and can be the cause of a substantial reduction in the separation factor and flux. A generalized equation relating the modified Peclet number to the concentration polarization occurring in the boundary layer is proposed and shown applicable to the majority of membrane separation processes like gas separations, reverse osmosis, ultrafiltration, pervaporation, and dissolved gas permeation in liquid. The membrane permeability, separation factor (or solute rejection), membrane thickness, boundary layer mass transfer coefficient, and Henry's law coefficient are the factors that determine the extent of polarization. An analysis is presented to offer a clean division of the hydrodynamic effect from the pure membrane property for membrane separation processes of liquid phases. Also the effect of membrane thickness on polarization is discussed. An attempt has been made to reconcile the different approaches taken for different membrane processes in the literature. Experimental data from widely different sources illustrate and confirm the present theory for pervaporative separation of dilute solutions of volatile organic compounds, dissolved gas permeation, and ultrafiltration of proteins and carbowax. Specific suggestions are made to obtain independent experimental measurements of the Peclet number and polarization index in terms of measurable quantities like the actual and intrinsic separation factors.  相似文献   

8.
Natural gas demand has dramatically increased due to the emerging growth of the world economy and industry. Presently, CO2 and H2S content in gas fields accounts for up to 90% and 15%, respectively. Apart from fulfilling the market demand, CO2 and H2S removal from natural gas is critical due to their corrosive natures, the low heating value of natural gas and the greenhouse gas effect. To date, several gas fields have remained unexplored due to limited technologies to monetize the highly sour natural gas. A variety of conventional technologies have been implemented to purify natural gas such as absorption, adsorption and membrane and cryogenic separation. The application of these technologies in natural gas upgrading are also presented. Among these commercial technologies, cryogenic technology has advanced rapidly in gas separation and proven ideally suitable for bulk CO2 removal due to its independence from absorbents or adsorbents, which require a larger footprint, weight and energy. Present work comprehensively reviews the mechanisms and potential of the advanced nonconventional cryogenic separation technologies for processing of natural gas streams with high CO2 and H2S content. Moreover, the prospects of emerging cryogenic technologies for future commercialization exploitation are highlighted.  相似文献   

9.
CO2 capture by hydrate formation is a novel gas separation technology, by which CO2 is selectively engaged in the cages of hydrate and is separated with other gases, based on the differences of phase equilibrium for CO2 and other gases. However, rigorous temperature and pressure, high energy cost and industrialized hydration separator dragged the development of the hydrate based CO2 capture. In this paper, the key problems in CO2 capture from the different sources such as shifted synthesis gas, flue gas and sour natural gas or biogas were analyzed. For shifted synthesis gas and flue gas, its high energy consumption is the barrier, and for the sour natural gas or biogas (CO2/CH4 system), the bottleneck is how to enhance the selectivity of CO2 hydration. For these gases, scale-up is the main difficulty. Also, this paper explored the possibility of separating different gases by selective hydrate formation and reviewed the progress of CO2 separation from shifted synthesis gas, flue gas and sour natural gas or biogas.  相似文献   

10.
The traceable and accurate measurement of biogas impurities is essential in order to robustly assess compliance with the specifications for biomethane being developed by CEN/TC408. An essential part of any procedure aiming to determinate the content of impurities is the sampling and the transfer of the sample to the laboratory. Key issues are the suitability of the sample container and minimising the losses of impurities during the sampling and analysis process. In this paper, we review the state-of-the-art in biogas sampling with the focus on trace impurities. Most of the vessel suitability studies reviewed focused on raw biogas. Many parameters need to be studied when assessing the suitability of vessels for sampling and storage, among them, permeation through the walls, leaks through the valves or physical leaks, sorption losses and adsorption effects to the vessel walls, chemical reactions and the expected initial concentration level. The majority of these studies looked at siloxanes, for which sampling bags, canisters, impingers and sorbents have been reported to be fit-for-purpose in most cases, albeit with some limitations. We conclude that the optimum method requires a combination of different vessels to cover the wide range of impurities commonly found in biogas, which have a wide range of boiling points, polarities, water solubilities, and reactivities. The effects from all the parts of the sampling line must be considered and precautions must be undertaken to minimize these effects. More practical suitability tests, preferably using traceable reference gas mixtures, are needed to understand the influence of the containers and the sampling line on sample properties and to reduce the uncertainty of the measurement.  相似文献   

11.
Gas permeation rates for helium, nitrogen, argon, and oxygen have been studied by using freezedried cellulose acetate membrane. When the gas permeation rate in freeze-dried cellulose acetate membrane is high, the gas permeation rate through the pores is predominant. On the other hand, when this rate is small, it is predominant at the dense part, except for the pores. Therefore the gas permeation rate in freeze-dried cellulose acetate membrane can be explained by the sum of two gas permeation rates.  相似文献   

12.
 A gas permeation system using two gaseous streams flowing on both sides of a membrane is developed. This gas permeation device and a coulometric detector are adapted for the continuous measurement of relatively high concentrations of sulphur dioxide. The interferences of other gases (NO2, NO and CO2) can be eliminated by using a scrubber behind the gas permeation device in the acceptor stream. The effects of the donor flow rates and gas pressure as well as the membrane thickness on the signal are discussed. The relative standard deviation is 1.3% (n=7) for 2.002×10-3 mol/mol certified sulphur dioxide. Received: 19 July 1996/Revised: 22 October 1996/Accepted: 29 October 1996  相似文献   

13.
Membrane separation of CO2 from natural gas, biogas, synthesis gas, and flu gas is a simple and energy‐efficient alternative to other separation techniques. But results for CO2‐selective permeance have always been achieved by randomly oriented and thick zeolite membranes. Thin, oriented membranes have great potential to realize high‐flux and high‐selectivity separation of mixtures at low energy cost. We now report a facile method for preparing silica MFI membranes in fluoride media on a graded alumina support. In the resulting membrane straight channels are uniformly vertically aligned and the membrane has a thickness of 0.5 μm. The membrane showed a separation selectivity of 109 for CO2/H2 mixtures and a CO2 permeance of 51×10?7 mol m?2 s?1 Pa?1 at ?35 °C, making it promising for practical CO2 separation from mixtures.  相似文献   

14.
The knowledge about the adsorption and diffusion properties (specially about diffusion) of aluminophosphate molecular sieves is very scarce in the literature. These materials offer interesting properties as adsorbents as they have a polar framework and do not contain charge-balancing cations. In this work, the adsorption isotherms of nitrogen, methane and carbon dioxide over an AlPO4-11 sample synthesized in our laboratories have been measured with a volumetric method at 25, 35, 50 and 65 °C over a pressure range up to 110 kPa. The adsorption capacities of each gas are determined by the strength of interaction with the pore surface (carbon dioxide > methane > nitrogen). The equilibrium selectivity to carbon dioxide is quite high with respect to other adsorbents without cations due to the polarity of the aluminophosphate framework. The adsorption Henry’s law constants and diffusion time constants of nitrogen, methane and carbon dioxide in the synthesized AlPO4-11 material have been measured from pulse experiments. A pressure swing adsorption (PSA) process for recovering methane from a carbon dioxide/methane mixture (resembling biogas) has been designed using a dynamic model where the measured adsorption equilibrium and kinetic information has been incorporated. The simulation results show that the proposed process could be simpler than other PSA processes for biogas upgrading based on cation-containing molecular sieves such as 13X zeolite, as it can treat the biogas at atmospheric pressure, and it requires a lower pressure ratio, to produce high purity methane with high recovery.  相似文献   

15.
A typical effect of plasticization of glassy polymers in gas permeation is a minimum in the relationship between the permeability and the feed pressure. The pressure corresponding to the minimum is called the plasticization pressure. Plasticization phenomena significantly effect the membrane performance in, for example, CO2/CH4 separation processes. The polymer swells upon sorption of CO2 accelerating the permeation of CH4. As a consequence, the polymer membrane loses its selectivity. Fundamental understanding of the phenomenon is necessary to develop new concepts to prevent it.In this paper, CO2-induced plasticization phenomena in 11 different glassy polymers are investigated by single gas permeation and sorption experiments. The main objective was to search for relationships between the plasticization pressure and the chemical structure or the physical properties of the polymer. No relationships were found with respect to the glass-transition temperature or fractional free volume. Furthermore, it was thought that polar groups of the polymer increase the tendency of a polymer to be plasticized because they may have dipolar interactions with the polarizable carbon dioxide molecules. But, no dependence of the plasticization pressure on the carbonyl or sulfone density of the polymers considered was observed. Instead, it was found that the polymers studied plasticized at the same critical CO2 concentration of 36±7 cm3 (STP)/cm3 polymer. Depending on the polymer, different pressures (the plasticization pressures) are required to reach the critical concentration.  相似文献   

16.
研究了三甲基硅丙炔(TMSP) 和五甲基二硅丙炔(PMDSP) 的共聚物膜对O_2、N_2气体的透过行为。发现 TMSP-PMDSP共聚物膜对O_2、N_2气体的透过活化能为负值,透过系数随温度升高而下降;受热历程不同,气体在膜中的透过行为也不相同。膜两侧气体压差不同时,气体在膜中的透过系数亦发生变化。用氟化物HFBM对共聚物膜表面进行了化学改性,改性膜的P_(O_2)/PN_2值达到3.52。  相似文献   

17.
Applying molecular dynamics simulation and computer graphics methods we have investigated the dynamic behavior of the separation process of CO2 from the CO2/N2 gas mixture in inorganic membranes at high temperatures. We have demonstrated that the permeation dynamics follows the Knudsen diffusion mechanism in our model system that has a slit-like pore of 6.3 Å. We have analyzed the effect of affinities of gas molecules for the membrane wall on the permeation to predict the optimal affinity strength for high selectivity of CO2. Our results indicate that in the model with the 600 K and 200 K affinities for CO2 and N2, respectively, we can obtain a high selectivity of CO2 even if the temperature is 1073 K. It is also shown that there is an optimal range for the CO2 affinity for the membrane wall to achieve good separation, which was estimated as the range of 400–600 K in our system, if the affinity of N2 is always weaker than that of CO2.  相似文献   

18.
Dense (homogeneous) membranes were prepared from poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) by using 1,1,2-trichloroethylene as a solvent at different solvent evaporation temperatures (22,4 and −10°C). The effect of temperature used during evaporation of solvent on the characteristics of the membrane was studied by using electron spin resonance, atomic force microscopy and gas permeation rate. The morphology of the surfaces of the membrane, the shape of spin probe in the membrane, and the selectivity of gases depend on the temperature of evaporation of solvent. The permeation rate of CO2 increased with the decrease in the temperature used for the preparation of the membrane. However methane permeation rate increased in the membrane prepared at −10°C. It is suggested that Langmuir sites could be favorable for the CH4 permeation.  相似文献   

19.
Both biogas desulfurization and wastewater denitrification can be achieved simultaneously, when nitrate/nitrite is used as the electron acceptor for H2S oxidation. The main objective of this study was to investigate the influence of the molar ratio of sulfide/nitrate (S/N) on biogas desulfurization performance in a biotrickling filter (BTF) and a biobubble column (BBC). The results show that with the decrease of the S/N ratios from 3.6 to 0.7, the removal efficiencies of H2S increased from about 66 to 100 %, while the removal of nitrate decreased from 100 to 70 % in the two bioreactors. The BTF has a better and more stable desulfurization performance than the BBC does, which could be attributed to their different gas-liquid contacting modes. With the increase of the S/N ratios from 1.0 to 2.5 in the BTFs, the removal of H2S in biogas was affected slightly, while the percentages of the produced sulfate decreased evidently. In addition, different supplying methods of nitrate wastewater, i.e., intermittent and continuous, did not affect the removal of H2S significantly, while the intermittent addition of nitrate wastewater increased the percentages of sulfate and denitrification performance.  相似文献   

20.
A model has been constructed for H2 permeation through Pd which accounts for external mass transfer, surface adsorption and desorption, transitions to and from the bulk metal, and diffusion within the metal. Reasonable values for all rate parameters have been estimated based on surface science and membrane literature. In the absence of external mass transfer resistance, nearly diffusion-limited permeation is expected for clean Pd for temperatures above approximately 573 K and membrane thicknesses down to 1 μm. Low-temperature permeation is limited by desorption while adsorption is only expected to impact permeation at very low upstream H2 partial pressures, or under conditions of substantially reduced sticking due to surface contamination. The efficiency of external gas-phase mass transfer is a critical element in permeation flux and apparent Sievert's law behavior for Pd membranes approaching 10 μm and thinner, especially at low H2 partial pressures or when a porous support is present. Comparison of the calculations with literature results for Pd membranes less than 10 μm thick reveals that permeation rates well below those expected are often observed, indicating the importance of factors related to fabrication methods, such as film microstructure, grain size, and surface or grain boundary contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号