首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Fe@Fe2O3 core-shell nanowires were synthesized via the reduction of Fe3+ ions by sodium borohydride in an aqueous solution with a subsequent heat treatment to form Fe2O3 shell and employed as a cathode catalyst for non aqueous Li-air batteries. The synthesized core-shell nanowires with an average diameter of 50–100 nm manifest superior catalytic activity for oxygen evolution reaction (OER) in Li-O2 batteries with the charge voltage plateau reduced to ~3.8 V. An outstanding performance of cycling stability was also achieved with a cutoff specific capacity of 1000 milliampere hour per gram over 40 cycles at a current density of 100 mA g?1. The excellent electrochemical properties of Fe@Fe2O3 as an O2 electrode are ascribed to the high surface area of the nanowires’ structure and high electron conductivity. This study indicates that the resulting iron-containing nanostructures are promising catalyst in Li-O2 batteries.  相似文献   

2.
Trimetallic NiMoW/Al2O3 catalyst was prepared using mixed H4SiMo3W9O40 heteropoly acid of Keggin structure and nickel citrate. Bimetallic NiMo/Al2O3 and NiW/Al2O3 catalysts based on H4SiMo12O40 and H4SiW12O40, respectively, were synthesized as reference samples. The use of mixed H4SiMo3W9O40 heteropoly acid as an oxide precursor allows the tungsten sulfidation degree and the degree of promotion of active phase particles to be increased. The hydrodesulfurization activity is enhanced as compared to NiW/Al2O3 catalyst. The synergistic enhancement of the activity of the NiMo3W9/Al2O3 catalyst relative to the bimetallic analogs is probably caused by formation of new mixed promoted active sites for direct desulfurization.  相似文献   

3.
The results of a study on the activity and operational stability of an Au–Pd/MFI/Al2O3 catalyst in the reaction of ethanol conversion into a gasoline fraction of hydrocarbons are reported. In the presence of the Au–Pd/MFI/Al2O3 catalyst, ethanol was almost completely converted into an alkane–aromatic fraction of C3–C11 hydrocarbons at 300°C in an atmosphere of Ar; the yield of this fraction was as high as 90% on a feed carbon basis. It was established that, in the presence of the bimetallic Au–Pd catalyst, the yield of the target fraction increased by 10%, as compared with that on a monometallic Au-containing sample. The Au–Pd/MFI/Al2O3 catalyst exhibited much higher stability in a long-term experiment in comparison with the previously tested pilot sample of Pd–Zn/MFI/Al2O3. After a 40-h operation, the yield of the target fraction of C3+ hydrocarbons in the presence of the Au–Pd/MFI/Al2O3 catalyst decreased by 15%. The treatment of the catalyst with hydrogen led to the complete restoration of its activity. The structure of the Au–Pd active constituents was studied by transmission electron microscopy X-ray photoelectron spectroscopy. methods of the and microscopy.  相似文献   

4.
Gold catalysts with loadings ranging from 0.5 to 7.0 wt% on a ZnO/Al2O3 support were prepared by the deposition–precipitation method (Au/ZnO/Al2O3) with ammonium bicarbonate as the precipitation agent and were evaluated for performance in CO oxidation. These catalysts were characterized by inductively coupled plasma-atom emission spectrometry, temperature programmed reduction, and scanning transmission electron microscopy. The catalytic activity for CO oxidation was measured using a flow reactor under atmospheric pressure. Catalytic activity was found to be strongly dependent on the reduction property of oxygen adsorbed on the gold surface, which related to gold particle size. Higher catalytic activity was found when the gold particles had an average diameter of 3–5 nm; in this range, gold catalysts were more active than the Pt/ZnO/Al2O3 catalyst in CO oxidation. Au/ZnO/Al2O3 catalyst with small amount of ZnO is more active than Au/Al2O3 catalyst due to higher dispersion of gold particles.  相似文献   

5.
Macro-/mesoporous Al2O3 supports were prepared by using monodisperse polystyrene (PS) microspheres as a template. The pore volume and BET surface area of the Al2O3 supports increased considerably with increasing amounts of the PS microspheres; further investigation showed that PS template only increased the volume of macro-pores but did not change the volume of meso-pores or micro-pores. Macro-/mesoporous Re2O7/Al2O3 metathesis catalysts were prepared through loading Re2O7 onto the as-prepared macro-/mesoporous Al2O3 supports, and their catalytic performance was tested in a fixed-bed tubular reactor using the metathesis of normal butylenes as a probe reaction. The results showed that the prepared macro-/mesoporous Re2O7/Al2O3 catalyst had high activity with consistent selectivity; propylene and pentene accounted for more than 90 wt% of the metathesis products, while the amount of ethylene plus hexane was less than 10 wt%, the majority of which was hexane. These Re2O7/Al2O3 catalysts had not only higher activity, but also longer working life span and higher tolerance to carbon residues than conventional Re2O7/Al2O3 catalysts.  相似文献   

6.
A series of Pd/Al2O3–ZrO2 catalysts were prepared to be used in methane oxidation. The effect of the addition order of metal alkoxides on the texture, structure and catalytic properties of the solids is studied. The control of the preparation parameters is achieved via sol gel way as an attractive route of the preparation of these catalysts. N2 physisorption, XRD, Scanning Electronic Microscopy (SEM) and H2 chemisorption are the main techniques used to characterize the prepared Pd/Al2O3–ZrO2 catalysts. Textural analysis reveals the mesoporosity of all the catalysts independently of the addition order of alkoxides while surface area is more pronounced when the aluminium alkoxide is added before or with the zirconium precursor. XRD patterns show the development of the zirconia tetragonal phase for all the catalysts. Better metallic dispersion is obtained when aluminium alkoxide is added first which can be justified by the high homogeneity observed on the corresponding catalyst as revealed by SEM technique.  相似文献   

7.
Biodiesel containing almost no glycerol has been produced by coupling reaction carried out over K2CO3 supported by calcium oxide as solid base catalysts. The solid base catalysts synthesized by wet impregnation exhibit an exceedingly high activity in biodiesel production. It was found that the reaction time required for the highest yield of biodiesel, 99.2%, can be shortened to 30 min over K2CO3/Al2O3 under the optimum reaction conditions: 8: 1: 1 molar ratio of methanol/DMC/oil, 30 wt % K2CO3/Al2O3 catalyst, and 65°C reaction temperature. Solid basic catalysts examined in the study were characterized by BET surface area, XRD, CO2-TPD, and SEM techniques. The strong interaction between K2CO3 and the support yields a new basic active site, which can be probably responsible for the high activity of K2CO3/Al2O3.  相似文献   

8.
Ag/Al2O3 is a promising catalyst for the selective catalytic reduction (SCR) by hydrocarbons (HC) of NO x in both laboratory and diesel engine bench tests. New developments of the HC-SCR of NO x over a Ag/Al2O3 catalyst are reviewed, including the efficiencies and sulfur tolerances of different Ag/Al2O3-reductant systems for the SCR of NO x ; the low-temperature activity improvement of H2-assisted HC-SCR of NO x over Ag/Al2O3; and the application of a Ag/Al2O3-ethanol SCR system with a heavy-duty diesel engine. The discussions are focused on the reaction mechanisms of different Ag/Al2O3-reductant systems and H2-assisted HC-SCR of NO x over Ag/Al2O3. A SO2-resistant surface structure in situ synthesized on Ag/Al2O3 by using ethanol as a reductant is proposed based on the study of the sulfate formation. These results provide new insight into the design of a high-efficiency NO x reduction system. The diesel engine bench test results showed that a Ag/Al2O3-ethanol system is promising for catalytic cleaning of NO x in diesel exhaust.  相似文献   

9.
One-pot synthesis of R-1-phenyethylacetate at 70°C was investigated using three different catalysts simultaneously, namely a bimetallic PdZn/Al2O3 as a hydrogenation catalyst, an immobilized lipase as an acylation catalyst and Ru/Al2O3 as a racemization catalyst. The most active bimetallic catalyst was PdZn/Al2O3 calcined at 300°C and reduced at 400°C, whereas the most selective although less active catalyst was the one being calcined and reduced at 500°C. The highest selectivity to R-1-phenylethyl acetate over this catalyst was 32 at 48% conversion. Ru/Al2O3 was confirmed to have a positive effect on the formation of the desired product, although it was not very active in the racemization during one-pot synthesis.  相似文献   

10.
Pd@CeO2 core–shell nanostructures with a tunable Pd core size, shape, and nanostructure as well as a tunable CeO2 sheath thickness were obtained by a biomolecule‐assisted method. The synthetic process is simple and green, as it involves only the heating of a mixture of Ce(NO3)3, l ‐arginine, and preformed Pd seeds in water without additives. Importantly, the synthesis is free of thiol groups and halide ions, thus providing a possible solution to the problem of secondary pollution by Pd nanoparticles in the sheath‐coating process. The Pd/CeO2 nanostructures can be composited well with γ‐Al2O3 to create a heterogeneous catalyst. In subsequent tests of catalytic NO reduction by CO, Pd@CeO2/Al2O3 samples based on Pd cubes (6, 10, and 18 nm), Pd octahedra (6 nm), and Pd cuboctahedra (9 nm) as well as a simply loaded Pd cube (6 nm)–CeO2/Al2O3 sample were used as catalysts to investigate the effects of the Pd core size and shape and the hybrid nanostructure on the catalytic performance.  相似文献   

11.
One-pot synthesis of R-1-phenyethylacetate at 70°C was investigated using three different catalysts simultaneously, namely a bimetallic PdZn/Al2O3 as a hydrogenation catalyst, an immobilized lipase as an acylation catalyst and Ru/Al2O3 as a racemization catalyst. The most active bimetallic catalyst was PdZn/Al2O3 calcined at 300°C and reduced at 400°C, whereas the most selective although less active catalyst was the one being calcined and reduced at 500°C. The highest selectivity to R-1-phenylethyl acetate over this catalyst was 32 at 48% conversion. Ru/Al2O3 was confirmed to have a positive effect on the formation of the desired product, although it was not very active in the racemization during one-pot synthesis.  相似文献   

12.
Deposited palladium catalysts of the hydrodechlorination of 1,3,5-trichlorobenzene were studied. Pure zirconium and aluminum oxides and ZrO2-Al2O3 mixtures with 1, 5, and 10 mol % Al2O3 prepared by coprecipitation were used as supports. Palladium was deposited by the precipitation of its hydroxide on supports. Catalysts on binary supports (ZrO2 + 1% Al2O3 and ZrO2 + 5% Al2O3) exhibited higher activity and stability in hydrodechlorination compared with catalysts on pure supports. The suggestion was made that the high activity and stability of these systems in hydrodechlorination was related to the formation of binary oxide in the interaction of ZrO2 with palladium oxide at the stage of annealing of the catalyst precursor. Binary oxide, which was a center of the activation of the C-Cl bond, was simultaneously a source of active hydrogen. The presence of various palladium states in catalysts was substantiated by the temperature programmed reduction method.  相似文献   

13.
Со-Мо/Al2O3 and Ni-W/Al2O3 catalysts were tested in hydrotreating of light cycle oil from catalytic cracking, of the straight-run gasoil, and of their mixture under typical hydrotreating conditions used in industry. The catalysts prepared using PMo12 and PW12 heteropoly acids exhibit high catalytic activity. The Со-Мо/Al2O3 catalyst is more active in hydrodesulfurization and hydrogenation of olefin and diene hydrocarbons, whereas the Ni-W/Al2O3 catalysts are more active in hydrogenation of mono- and polycyclic aromatic hydrocarbons. Comparison of the quality characteristics of the hydrogenizates obtained with the requirements of the technical regulations shows that the required levels of the sulfur content and cetane number of the hydrogenizates at practically accessible process parameters can be reached for mixtures of the straight-run gasoil and light cycle oil from catalytic cracking with high content of the latter component only when the process with the Со-Мо/Al2O3 system and Ni-W/Al2O3 catalysts is performed in two steps.  相似文献   

14.
Effect of the phase composition of aluminum oxide [γ- and (δ + θ) phase] and introduction of zinc additives on the catalytic properties of 0.5% Pd/Al2O3 systems in the reaction of liquid-phase hydrogenation of acetylene into ethylene under an elevated pressure in a flow-through mode was studied. An increase in the activity of the Pd catalyst upon modification with zinc is only observed in the case of a system supported by the mixed phase of (δ + θ) aluminum oxide. XAFS spectroscopy was used to find that the increase in the activity and selectivity with respect to ethylene (in the presence of carbon monoxide) on the (0.5% Pd–0.62% Zn)/(δ + θ)-Al2O3 catalyst is correlated with the formation of the PdZn intermetallic compound.  相似文献   

15.
We have established that introducing a promoter (Pd) and modifying additives (La2O3, CeO2) into the composition of a Co3O4/cordierite catalyst leads to an increase in its activity and selectivity during reduction of oxygen by hydrogen in the presence of nitrogen(II) oxide.  相似文献   

16.
The oxidative dehydrogenation of propane on a supported vanadium catalyst was studied (the support was a complex oxide system consisting of a ceria–zirconia solid solution deposited on γ-Al2O3 (CeZrO/γ-Al2O3)). A comparative analysis of the properties of the support and the catalyst prepared on its basis was performed. The support and catalyst were characterized by the BET method, scanning electron microscopy, X-ray diffraction analysis, and Raman spectroscopy. The catalytic properties of the catalyst and support were studied in propane oxidation at 450 and 500°C with pulse feeding of the reagent. The effect of propane on the support was found to improve the oxidative properties of the latter. This behavior of the support is related to the preparation procedure, which leads to the formation on its surface of the crystalline phase of the ceria–zirconia solid solution and amorphous ZrO2 and Al2O3 phases and/or their solid solution. Similar processes occur with the catalyst support during the oxidative dehydrogenation, giving rise to additional active centers (CeVO4).  相似文献   

17.
The effect of CeO2 on the properties of the Pd/Co3O4-CeO2/cordierite catalyst is a function of the method of its preparation. The catalyst obtained by the simultaneous deposition of cerium oxide and cobalt oxide showed high activity in the oxidation of CO (CO + O2, CO + NO) and extensive oxidation of hexane (C6H14 + O2). This behavior is due to the increased mobility of surface oxygen and increased dispersion of the catalyst components.  相似文献   

18.
The catalytic activity in the oxidation of hydrogen (in the gaseous state in the presence of excess oxygen) has been studied for samples of Pt(Pd)/Ta2O5−x, formed by reduction with hydrogen. The samples obtained had greater activity than the traditional catalysts Pt(Pd)/Al2O3. According to X-ray diffraction analysis and electron microscopic studies, Ta2O5−x becomes amorphous with the formation of more reduced non-stoichiometric oxygen-deficient tantalum oxides with a surface layer of catalyst. __________ Translated from Teoreticheskaya i éksperimental’naya Khimiya, Vol. 44, No. 3, pp. 180–185, May–June, 2008.  相似文献   

19.
A presulphided treatment was applied to the oxidic Ni-Mo-Zn/Al2O3 catalyst (nickel catalyst) in order to avoid thermal run-away during initiation of the hydrogenation of pyrolysis gasoline. The physico-chemical properties of the prepared oxidic nickel catalyst, the reduced and passivated (RP) nickel catalyst and the sulphided (RPS) nickel catalyst were characterised using N2 adsorption-desorption, X-ray diffraction, temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The TPR results showed that the reducibility of the RP Ni-Mo-Zn/Al2O3 catalyst was improved over the oxidic nickel catalyst. The XPS spectra confirmed the binding energy of the RPS nickel catalyst to be higher than that of the oxidic nickel catalyst. The catalytic performance was evaluated on a fixed-bed reactor (reaction temperature between 30 °C and 70°C, at 2.8 MPa of total pressure and weight hourly space velocity of 2.0 h?1, the volume of H2/pyrogasoline = 200: 1). The rising temperature of the RPS nickel catalyst was almost 20°C lower than that of the oxidic nickel catalyst during the initial stage of the hydrogenation reaction. The results indicated that the RPS nickel catalyst exhibited better stability than the oxidic nickel catalyst during the start-up period, thereby providing a better selectivity in long-term operation.  相似文献   

20.
The state of surface Pt atoms in the Pt/SO4/ZrO2/Al2O3 catalyst and the effect of the state of platinum on its adsorption and catalytic properties in the reaction of n-hexane isomerization were studied. The Pt-X/Al2O3 alumina-platinum catalysts modified with various halogens (X = Br, Cl, and F) and their mechanical mixtures with the SO4/ZrO2/Al2O3 superacid catalyst were used in this study. With the use of IR spectroscopy (COads), oxygen chemisorption, and oxygen-hydrogen titration, it was found that ionic platinum species were present on the reduced form of the catalysts. These species can adsorb to three hydrogen atoms per each surface platinum atom. The specific properties of ionic platinum manifested themselves in the formation of a hydride form of adsorbed hydrogen. It is believed that the catalytic activity and operational stability of the superacid system based on sulfated zirconium dioxide were due to the participation of ionic and metallic platinum in the activation of hydrogen for the reaction of n-hexane isomerization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号