首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We study the motion of a satellite (a rigid body) with respect to its center of mass in an elliptic orbit of small eccentricity. We analyze the nonlinear problem of the existence and stability of periodic (in the orbital coordinate system) rotations of the satellite with a period multiple of the period of revolution of its center of mass in the orbit. We study the direct and reverse rotations. In particular, we find and investigate the set of bifurcation values of the satellite dimensionless inertial parameter near which the branching of the periodic reverse rotations occurs. We consider three specific examples of application of the obtained general theoretical conclusions. In one of these examples, we prove the stability of the direct resonance rotations of Mercurial type. In the other two examples, we consider the branching problem for reverse rotations with a period whose ratio to the period of motion of the center of mass in the orbit is equal to 1 or 2.  相似文献   

2.
The satellite motion relative to the center of mass in a central Newtonian gravitational field on an elliptic orbit is considered. The satellite is a rigid body whose linear dimensions are small compared with the orbit dimensions. We study a special case of planar motion in which the satellite rotates in the orbit plane and performs three revolutions in absolute space per two revolutions of the center of mass in the orbit. Perturbations are assumed to be arbitrary (they can be planar as well as spatial). In the parameter space of the problem, we obtain Lyapunov instability domains and domains of stability in the first approximation. In the latter, we construct third- and fourth-order resonance curves and perform nonlinear stability analysis of the motion on these curves. Stability was studied analytically for small eccentricity values and numerically for arbitrary eccentricity values.  相似文献   

3.
We study motions of a rigid body (a satellite) about the center of mass in a central Newtonian gravitational field in a circular orbit. There is a known particular motion of the satellite in which one of its principal central axes of inertia is perpendicular to the orbit plane and the satellite itself exhibits plane pendulum-like oscillations about this axis. Under the assumption that the satellite principal central moments of inertia A, B, and C satisfy the relation B = A + C corresponding to the case of a thin plate, we perform rigorous nonlinear analysis of the orbital stability of this motion.In the plane of the problem parameters, namely, the oscillation amplitude ε and the inertial parameter, there exist countably many domains of orbital stability of the satellite oscillations in the linear approximation. Nonlinear orbital stability analysis was carried out in thirteen of these domains. Isoenergetic reduction of the system of equations of the perturbed motion is performed at the energy level corresponding to the unperturbed periodic motion. Further, using the algorithm developed in [1], we construct the symplectic mapping generated by the equations of the reduced system, normalize it, and analyze the stability. We consider resonance and nonresonance cases. For small values of the oscillation amplitude, we perform analytic investigations; for arbitrary values of ε, numerical analysis is used.Earlier, numerical analysis of stability of plane pendulum-like motions of a satellite in a circular orbit was performed in several special cases in [1–4].  相似文献   

4.
We consider the satellite plane motion about the center of mass in a central Newtonian gravitational field in an elliptic orbit. This motion is described by a second-order differential equation known as the Beletskii equation. In the framework of the plane problem (under the assumption that the body vibrates in the unperturbed orbit plane), there exists a family of periodic solutions of the Beletskii equation near the 3: 2 resonance between the orbital revolution and axial rotation periods. A nonlinear stability analysis of these periodic solutions is carried out both in the presence of third- and fourth-order resonances and in their absence as well as on the boundaries of the stability regions in the first approximation. The problem is solved numerically. For fixed parameter values (the eccentricity of the center-of-mass orbit and the inertial parameter), the construction of a symplectic mapping of the equilibrium into itself is used to calculate the coefficients of the mapping generating function, which are further used to conclude whether the equilibrium is stable or not.  相似文献   

5.
We study the linear problem on the stability of rotation of a dynamically symmetric satellite about the normal to the plane of the orbit of its center of mass. The orbit is assumed to be elliptic, and the orbit eccentricity is arbitrary. We assume that the Hamiltonian contains a small parameter characterizing the deviation of the satellite central ellipsoid of inertia from the sphere. This is a resonance problem, since if the small parameter is zero, then one of the frequencies of small oscillations of the symmetry axis in a neighborhood of the unperturbed rotation of the satellite about the center of mass is exactly equal to the frequency of the satellite revolution in the orbit. We indicate a countable set of values of the angular velocity of the unperturbed rotation for which the resonance is even double. The stability and instability domains are obtained in the first approximation with respect to the small parameter.  相似文献   

6.
We study the fast rotational motion of a dynamically nonsymmetric satellite about the center of mass under the action of the gravitational torque and the drag torque. Orbital motions with arbitrary eccentricity are assumed to be given. The drag torque is assumed to be a linear function of the angular velocity. The system obtained after the averaging over the Euler-Poinsot motion is studied. We discover the following phenomena: the modulus of the angular momentum and the kinetic energy decrease, and there exist quasistationary regimes of motion (along the polhodes). The orientation of the angular momentum vector in the orbital frame of reference is determined. The general case is studied numerically, and an analytic study is performed in a neighborhood of the axial rotation and in the case of small dissipation.  相似文献   

7.
This paper presents a dynamic analysis of a tethered satellite system with a moving mass. A dynamic model with four degrees of freedom, i.e., a two-piece dumbbell model, is established for tethered satellites conveying a mass between them along the tether length. This model includes two satellites and a moving mass, treated as particles in a single orbital plane, which are connected by massless, straight tethers. The equations of motion are derived by using Lagrange’s equations. From the equations of motion, the dynamic response of the system when the moving mass travels along the tether connecting the two satellites is computed and analyzed. We investigate the global tendencies of the libration angle difference (between the two sections of tether) with respect to the changes in the system parameters, such as the initial libration angle, size (i.e. mass) of the moving mass, velocity of the moving mass, and tether length. We also present an elliptic orbit case and show that the libration angles and their difference increase as orbital eccentricity increases. Finally, our results show that a one-piece dumbbell model is qualitatively valid for studying the system under certain conditions, such as when the initial libration angles, moving mass velocity, and moving mass size are small, the tether length is large, and the mass ratio of the two satellites is large.  相似文献   

8.
The motion of a satellite in a circular orbit with respect to its center of mass is considered. The satellite bears an elastic tether system unrolled along the local vertical. The load at the end of the tether oscillates harmonically. The satellite motion under the action of the gravitational moment and the moment due to the tether tension force is studied. The bifurcation diagram is constructed and the hetero- and homoclinic separatrix trajectories are determined. Mel'nikov's method is used to study the satellite chaotic behavior near separatrices under the action of the periodic tether tension force. The results of the present paper can be used to analyze tether systems of gravitational stabilization and to study the orbital behavior of a satellite with an unrolled tether system with respect to the satellite center of mass.  相似文献   

9.
The full dynamics of an axisymmetric rigid body in a uniformly rotating second degree and order gravity field are investigated, where orbit and attitude motions of the body are coupled through the gravity. Compared with the classical orbital dynamics with the body considered as a point mass, the full dynamics is a higher-precision model in close proximity of the central body where the gravitational orbit–attitude coupling is significant, such as a spacecraft about a small asteroid or an irregular-shaped natural satellite about a planet. The full dynamics are modeled by using the non-canonical Hamiltonian structure, in terms of variables expressed in the frame fixed with the central body. A Poisson reduction is carried out by means of the axial symmetry of the body, and a reduced system with lower dimension, as well as its non-canonical Hamiltonian structure and equations of motion, is obtained through the reduction process. With the second-order potential, three types of relative equilibria are found to be possible: cylindrical equilibria, generalized hyperbolic equilibria, and conic equilibria, which are counterparts to cylindrical equilibria, hyperbolic equilibria, and conic equilibria of an axisymmetric rigid body in a spherical gravity field, respectively. The geometrical properties and existence of the cylindrical equilibria and generalized hyperbolic equilibria are investigated in detail. It has been found that compared with the classical results in a spherical gravity field, the relative equilibria in this study are more complicated and diverse. The most significant difference is that the non-spherical gravity field enables the existence of non-Lagrangian hyperbolic equilibria, called generalized hyperbolic, which cannot exist in a spherical gravity.  相似文献   

10.
纯引力轨道是物体在太空仅受引力作用的运行轨道, 通过构造纯引 力轨道, 可实现超高精度的空间引力探测, 也可为科学实验提供超稳定卫星 平台. 作为纯引力轨道构造的核心, 检验质量的相对测量不仅提供了部分任 务科学数据, 还为航天器平台的跟踪控制提供输入. 首先, 描述了纯引力轨道 的概念内涵, 总结了它在卫星重力测量、引力波探测等方面的应用情况. 其 次, 综述了不同任务对相对测量的需求, 给出了电容式测量、磁感应测量和 光学测量的原理, 总结了各自的优缺点. 根据检验质量的姿态运动, 将检验质 量质心相对状态解算问题分为3 类, 给出了基于检验质量姿态动力学与表面 建模的典型解算模型和质心速度估计方法. 最后分析了非引力干扰的理论计 算、地面实验验证和在轨实验验证问题.   相似文献   

11.
B. S. Yu  D. P. Jin  H. Wen 《Meccanica》2017,52(9):2035-2046
Based on the nonlinear dynamic equations of a tethered satellite system with three-dimensional attitude motion, an analytical tether length rate control law for deployment is derived from the equilibrium positions of the system and the scheme of the value range of the expected in-plane pitch angle. The proposed control law can guarantee that the tensional force acting on the end of the tether remains positive. The oscillation of the out-of-plane roll motion in conjunction with the in-plane pitch motion is effectively suppressed during deployment control. The analytical control law is still applicable, even if the system runs on a Keplerian elliptical orbit with a large eccentricity. The local stability of the non-autonomous system during deployment control is analyzed using the Floquet theory, and the global behavior is numerically verified using simple cell mapping. The numerical simulations in the paper demonstrate the proposed analytical control law.  相似文献   

12.
Nomenclature OXYZEarth’sequatorialinertialreferenceframeωArgumentofperigee SlxyzLeadingsatelliteorbitframeMMeananomaly SfxyzFollowingsatelliteorbitframefTrueanomalyaSemi majoraxisθ=ω fArgumentoflatitude eEccentricitynMeanmotion iOrbitinclinationrSatel…  相似文献   

13.
挠性联结双体航天器的稳定性与分岔   总被引:3,自引:0,他引:3  
刘延柱  成功 《力学学报》2000,32(2):207-212
研究圆轨道内受万有引力矩作用的挠性联结双体航天器在轨道平面内的姿态运动,讨论其相对轨道坐标系统平衡状态的稳定性与分岔。提出判平衡方程非平凡解存在性的几何方法,并应用Liapunov直接法、Liapunov-Schmidt约化方法和奇异性理论导出解析形式的稳定性与分岔的充要条件,从而对系统的全局运动性态作出定性的描述。  相似文献   

14.
The motion of a dumbbell-shaped body (a pair of massive points connected with each other by a weightless rod along which the elevator, i.e., a third point, is moving according to a given law) in an attractive Newtonian central field is considered. In particular, such a mechanical system can be considered as a simplified model of an orbital cable system equipped with an elevator. The practically most interesting case where the cabin performs periodic ??shuttle??motions is studied. Under the assumption that the elevator mass is small compared with the dumbbell mass, the Poincaré theory is used to determine the conditions for the existence of families of system periodic motions analytically depending on the arising small parameter and passing into some stable radial steady-state motion of the unperturbed problem as the small parameter tends to zero. It is also proved that, for sufficiently small parameter values, each of the radial relative equilibria generates exactly one family of such periodic motions. The stability of the obtained periodic solutions is studied in the linear approximation, and these solutions themselves are calculated up to terms of the firstorder in the small parameter. The contemporary studies of the motion of orbital dumbbell systems apparently originated in Okunev??s papers [1, 2]. These studies were continued in [3], where plane motions of an orbit tether (represented as a dumbbell-shaped satellite) in a circular orbit were considered in the satellite approximation. In [4], in the case of equal masses and in the unbounded statement, the energy-momentum method was used to perform the dynamic reduction of the problem and analyze the stability of relative equilibria. A similar technique was used in [5], where, in contrast to the above-mentioned problems, the massive points were connected by an elastic spring resisting to compression and forming a dumbbell with elastic properties. Under such assumptions, the stability of radial configurations was investigated in that paper. The bifurcations and stability of steady-state configurations of a deformable elastic dumbbell were also studied in [6]. Various obstacles arising in the construction of orbital cable systems, in particular, the strong deformability of known materials, were discussed in [7]. In [8], the problem of orbital motion of a pair of massive points connected by an inextensible weightless cable was considered in the exact statement. In other words, it was assumed that a unilateral constraint is imposed on themassive points. The conditions of stability of vertical positions of the relative equilibria of the cable system, which were obtained in [8], can be used for any ratio of the subsatellite and station masses. In turn, these results agree well with the results obtained earlier in the studies of stability of vertical configurations in the case of equal masses of the system end bodies [3, 4]. One of the basic papers in the dynamics of three-body orbital cable systems is the paper [9]. The steady-state motions and their bifurcations and stability were studied depending on the elevator cabin position in [10].  相似文献   

15.
The full dynamics of a spacecraft around an asteroid, in which the gravitational orbit–attitude coupling is considered, has been shown to be of great value and interest. Nonlinear stability of the relative equilibria of the full dynamics of a rigid spacecraft around a uniformly rotating asteroid is studied with the method of geometric mechanics. The non-canonical Hamiltonian structure of the problem, i.e., Poisson tensor, Casimir functions and equations of motion, are given in the differential geometric method. A classical kind of relative equilibria of the spacecraft is determined from a global point of view, at which the mass center of the spacecraft is on a stationary orbit, and the attitude is constant with respect to the asteroid. The conditions of nonlinear stability of the relative equilibria are obtained with the energy-Casimir method through the semi-positive definiteness of the projected Hessian matrix of the variational Lagrangian. Finally, example asteroids with a wide range of parameters are considered, and the nonlinear stability criterion is calculated. However, it is found that the nonlinear stability condition cannot be satisfied by spacecraft with any mass distribution parameters. The nonlinear stability condition by us is only the sufficient condition, but not the necessary condition, for the nonlinear stability. It means that the energy-Casimir method cannot provide any information about nonlinear stability of the relative equilibria, and more powerful tools, which are the analogues of the Arnold’s theorem in the canonical Hamiltonian system with two degrees of freedom, are needed for a further investigation.  相似文献   

16.
The motion of a rolling ball actuated by internal point masses that move inside the ball’s frame of reference is considered. The equations of motion are derived by applying Euler–Poincaré’s symmetry reduction method in concert with Lagrange–d’Alembert’s principle, which accounts for the presence of the nonholonomic rolling constraint. As a particular example, we consider the case when the masses move along internal rails, or trajectories, of arbitrary shape and fixed within the ball’s frame of reference. Our system of equations can treat most possible methods of actuating the rolling ball with internal moving masses encountered in the literature, such as circular motion of the masses mimicking swinging pendula or straight line motion of the masses mimicking magnets sliding inside linear tubes embedded within a solenoid. Moreover, our method can model arbitrary rail shapes and an arbitrary number of rails such as several ellipses and/or figure eights, which may be important for future designs of rolling ball robots. For further analytical study, we also reduce the system to a single differential equation when the motion is planar, that is, considering the motion of the rolling disk actuated by internal point masses, in which case we show that the results obtained from the variational derivation coincide with those obtained from Newton’s second law. Finally, the equations of motion are solved numerically, illustrating a wealth of complex behaviors exhibited by the system’s dynamics. Our results are relevant to the dynamics of nonholonomic systems containing internal degrees of freedom and to further studies of control of such systems actuated by internal masses.  相似文献   

17.
We consider a precession motion, close to the classical Lagrange case, of an asymmetric rigid body with a strong magnet in an orbit in the geomagnetic field. For the principal moment we take the restoring torque due to the interaction between the planet magnetic fields and the rigid body. The perturbing actions are due to small moments of the rigid body mass-inertial asymmetry and small constant moments. We show that these perturbations result in the realization of secondary resonance effects in the rotational motion of the rigid body caused by the influence of resonance denominators in higher-order approximations of the averaging method. These effects were discovered in the study of rotational motion of a satellite with a magnetic damper in the nearly Euler case. In the present paper, we analyze both the secondary resonance effects themselves and the external stability of resonances. We obtain conditions ensuring a decrease in the angular velocity of the rigid body rotation about its center of mass. We also discover several new laws of influence of resonances on the nonresonance evolution of slow variables, which is related to the appearance of stable resonances.  相似文献   

18.
研究平动点附近周期轨道上旋转多体绳系卫星编队系统的非线性耦合动力学问题。编队系统为各卫星质量接近的轮辐状结构,位于日地系统第二平动点附近,整个系统的旋转保持系绳处于张紧状态,建立Hill限制性三体问题的绳系编队系统动力学模型。针对处于留位阶段的典型对称三星编队,在位于较大Halo轨道上无控制力作用的情况下,进行母卫星轨道运动与系绳摆动耦合运动的动力学模拟,分析轨道方向、卫星质量比、系绳长度以及初始旋转速度对编队系统整体稳定性的影响。  相似文献   

19.
We consider the dynamics of an infinitesimal particle under the gravitational action of P primaries of equal masses. These move in an elliptic homographic solution of the P-body problem and the infinitesimal particle moves along the straight line perpendicular to their plane of motion and passing through the common focus of the ellipses. In this work we consider the parametric stability of the infinitesimal mass located at the focus of the ellipses. We construct the boundary curves of the stability/instability regions in the plane of the parameters \(\mu \) and \(\epsilon \), which are the mass of each primary and the eccentricity of the elliptic orbit, respectively.  相似文献   

20.
The plane motion of a rigid body with a discrete mass distribution and a material point under mutual attraction is considered. The stationary configurations of this mechanical system are studied in the case when the mass of the material point can be ignored and the body rotates about its mass center at a nonzero angular velocity and in the general case of mutual interaction between the body and the material point. It is shown that in this mechanical system there always exist at least two different positions of relative equilibrium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号