首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The first regiodivergent opening of unbiased epoxides (REO) providing the ring-opened products in high enantiomeric excess from racemic and exceptionally high enantiomeric excess from enantioenriched substrates in a double asymmetric process has been devised. It constitutes a more general case of the very important enantioselective openings of meso-epoxides. The dependence of the selectivity of ring opening on the epoxide’s substitution pattern was studied.  相似文献   

2.
The mechanism of titanocene-mediated epoxide opening was studied by a combination of voltammetric, kinetic, computational, and synthetic methods. With the aid of electrochemical investigations the nature of a number of Ti(III) complexes in solution was established. In particular, the distribution of monomeric and dimeric Ti(III) species was found to be strongly affected by the exact steric conditions. The overall rate constants of the reductive epoxide opening were determined for the first time. These data were employed as the basis for computational studies of the structure and energies of the epoxide-titanocene complexes, the transition states of epoxide opening, and the beta-titanoxy radicals formed. The results obtained provide a structural basis for the understanding of the factors determining the regioselectivity of ring opening and match the experimentally determined values. By employing substituted titanocenes even more selective epoxide openings could be realized. Moreover, by properly adjusting the steric demands of the catalysts and the substrates the first examples of reversible epoxide openings were designed.  相似文献   

3.
The simultaneous photoinitiated cationic polymerizations of epoxides and vinyl ethers in the presence of diaryliodonium salt photoinitiators results in an acceleration of the ring‐opening epoxide polymerization and a deceleration of the vinyl ether polymerization. These effects are seen both in mixtures of the two monofunctional monomers as well as in hybrid monomers which bear vinyl ether and epoxide groups in the same molecule. A combination of two mechanisms have been proposed to account for these effects. The reversible conversion of alkoxycarbenium to oxiranium ions results in a two‐stage reaction in which first, the epoxide, then the vinyl ether polymerization takes place. Free radical chain induced decomposition of the diaryliodonium salt produces a large incremental number of carbenium ion species which results in the acceleration effect.  相似文献   

4.
Montmorillonite K 10 efficiently catalyses the opening of epoxide rings by amines in high yields with excellent regio- and diastereo-selectivities under solvent-free conditions at room temperature affording an improved process for synthesis of 2-amino alcohols. Reaction of cyclohexene oxide with aryl/alkyl amines leads to the formation of trans-2-aryl/alkylaminocyclohexanols. For unsymmetrical epoxides, the regioselectivity is controlled by the electronic and steric factors associated with the epoxide and the amine. Selective nucleophilic attack at the benzylic carbon of styrene oxide takes place with aromatic amines, whereas, aliphatic amines exhibit preferential nucleophilic attack at the terminal carbon. Aniline reacts selectively at the less hindered carbon of other unsymmetrical epoxides. The difference in the internal strain energy of the epoxide ring in cycloalkene oxides and alkene oxides led to selective nucleophilic opening of cyclohexene oxide by aniline in the presence of styrene oxide. Due to the chelation effect, selective activation of the epoxide ring in 3-phenoxy propylene oxide takes place in the presence of styrene oxide leading to preferential cleavage of the epoxide ring in 3-phenoxy propylene oxide by aniline.  相似文献   

5.
A new and efficient process for the conversion of terminal epoxides to gamma-butanolides is described involving Lewis acid promoted epoxide ring-opening by 1-morpholino-2-trimethylsilyl acetylene. Addition of a terminal epoxide to a solution of the ynamine and boron trifluoride diethyl etherate in dichloromethane at 0 degrees C rapidly affords a cyclic keteneaminal that can be hydrolyzed and protodesilylated under mild conditions to provide the corresponding gamma-butanolide in high yield. The net transformation is equivalent to an acetate enolate opening of terminal epoxides. The formation of a cyclic keteneaminal as the direct addition product was observed by monitoring of the reaction by IR and NMR spectroscopy. Functionalized gamma-lactones were prepared by the interception of the reactive cyclic keteneaminal prior to hydrolysis. Reactions with enantiomerically enriched terminal epoxides provide the corresponding gamma-butanolides without loss of optical activity. The compatibility of the present methodology with a wide range of functional groups is noteworthy.  相似文献   

6.
We describe a regiodivergent epoxide opening (REO) featuring a catalyst‐controlled synthesis of enantiomerically and diastereomerically highly enriched or pure syn‐ and anti‐ 1,3‐ and 1,4‐difunctionalized building blocks from a common epoxide precursor. The REO is attractive for natural product synthesis and as a branching reaction for diversity‐oriented synthesis with epoxides.  相似文献   

7.
We describe a regiodivergent epoxide opening (REO) featuring a catalyst‐controlled synthesis of enantiomerically and diastereomerically highly enriched or pure syn‐ and anti‐ 1,3‐ and 1,4‐difunctionalized building blocks from a common epoxide precursor. The REO is attractive for natural product synthesis and as a branching reaction for diversity‐oriented synthesis with epoxides.  相似文献   

8.
The asymmetric ring opening of meso epoxides with TMSCN is catalyzed by (pybox)YbCl3 complexes, yielding the beta-trimethylsilyloxy nitrile ring-opened products with good enantioselectivities (83-92% ee). The reaction exhibits a second-order kinetic dependence on catalyst concentration and a first-order dependence on epoxide concentration, consistent with a bimetallic pathway involving simultaneous activation of epoxide and cyanide.  相似文献   

9.
In contrast to a previous literature report, thiourea is not a catalyst in the ring opening reaction of epoxides by means of bromine or iodine. Instead, thiourea reacts with the halogen to give a complex mixture of products, among them hydrogen halogenides, which are in fact the real epoxide ring opening reactants. The presence of water is crucial in this reaction.  相似文献   

10.
This paper presents a versatile reagent for epoxide cleavage. The allyltin tribromide could act as a novel and easily prepared allylation reagent and halide atom donor to convert epoxides to the corresponding homoallyl alcohols and halohydrins in high yields with excellent regioselectivities under mild reaction conditions, respectively. It could also act as a Lewis acid to catalyze the ring opening reactions of epoxides with alcohols.  相似文献   

11.
Fagnou K  Lautens M 《Organic letters》2000,2(15):2319-2321
[Rh(CO)(2)Cl](2) is an effective catalyst for the ring opening of vinyl epoxides with alcohols and aromatic amines under neutral conditions at room temperature. The reaction occurs with excellent diastereo- and regioselectivity (>20:1) giving the trans-1,2-amino alcohols or alkoxy alcohols for a wide range of substrates. The regio- and stereochemistry of these reactions is complementary to that typically obtained with palladium-catalyzed ring openings of vinyl epoxides.  相似文献   

12.
A kinetic study was conducted of the independent photoinitiated cationic polymerization of a number of epoxide monomers and mixtures of these monomers with N‐vinylcarbazole. The results show that these two different classes of monomers undergo complex synergistic interactions with one another during polymerization. It was demonstrated that N‐vinylcarbazole as well as other carbazoles are efficient photosensitizers for the photolysis of both diaryliodonium and triarylsulfonium salt photoinitiators. In the presence of large amounts of N‐vinylcarbazole, the rates of the cationic ring‐opening photopolymerization of epoxides are markedly accelerated. This effect has been ascribed to a photoinitiated free‐radical chain reaction that results in the oxidation of monomeric and polymeric N‐vinylcarbazole radicals by the onium salt photoinitiators to generate cations. These cations can initiate the ring‐opening polymerization of the epoxides, leading to the production of copolymers. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3697–3709, 2000  相似文献   

13.
《Tetrahedron: Asymmetry》2005,16(9):1685-1692
Halohydrin dehalogenase obtained from Agrobacterium radiobacter AD1, has been tested for the nitrite-mediated ring opening of epoxides. This reaction mainly leads to the formation of unstable hydroxynitrite ester intermediates, which can be further hydrolyzed to the corresponding diols. This conversion proceeds with high enantioselectivity and high regioselectivity towards styrene oxide derivatives. It has been concluded that halohydrin dehalogenase can serve as an attractive alternative to epoxide hydrolases in the preparation of enantiopure epoxides by kinetic resolution.  相似文献   

14.
Protonation of the epoxides, diol epoxides, and dihydrodiols of benzo[h]quinoline (BhQ), benzo[f]quinoline (BfQ), phenanthrene (Phe), benzo[c]phenanthridine (BcPhen), and chrysene (Chry) were studied by DFT at the B3LYP/6-31G* level, and selected cases were calculated with the 6-31+G* diffuse-function augmented basis set for comparison purposes. Bay-region carbocations were formed from O-protonated epoxides via a barrierless processes. Relative carbocation stabilities were determined in the gas phase and with water as solvent (PCM method). The presence of a heteroatom changes the regioselectivity of epoxide ring opening, in some cases favoring non-bay-region carbocations. The epoxide ring opening mode is also greatly influenced by N-protonation. The dications resulting from initial N-protonation followed by epoxide protonation were also studied by DFT. Charge delocalization modes in the resulting mono- and dications were derived by GIAO-NMR (based on Delta delta13C values) and via the NPA-derived changes in charges. Relative aromaticity in different rings in the arenium ions was gauged by NICS. In representative cases, the covalent adducts (syn and anti) formed by reaction of the benzylic carbocations derived from diol epoxides and dihydrodiols with methoxide and methanethiolate anions were studied. Relative energies (in the gas phase and with water as solvent) and geometries of the adducts formed by quenching of the carbocations derived from BhQ and Phe-epoxides with guanine via the exocyclic amino group and via the N-7 were also investigated computationally. Although aqueous phase calculations change the energy for the addition reactions because of greater stabilization of the reactants, relative reactivity trends remain the same. The data are discussed, taking into account the available experimental results concerning the biological activity of these compounds.  相似文献   

15.
Grace H.C. Woo 《Tetrahedron》2007,63(25):5649-5655
The chemistry of 1,2,3,4-tetrahydro-1,5-naphthyridines and 2,3,4,5-tetrahydro-1H-pyrido[3,2-b]azepines has been explored with the goal of discovering reactions at N1 suitable for library development. Epoxide openings, Pd-catalyzed N-arylations, DEPBT-promoted acylations, and urea formation through the reaction with isocyanates were all successful. The epoxide opening chemistry using homochiral epichlorohydrin followed by epoxide reclosure and a second nucleophilic opening led to the preparation of a small 24-membered library.  相似文献   

16.
Zirconium(IV) chloride catalyses the nucleophilic opening of epoxide rings by amines leading to the efficient synthesis of β-amino alcohols. The reaction works well with aromatic and aliphatic amines in short times at room temperature in the absence of solvent. Exclusive trans stereoselectivity is observed for cyclic epoxides. Aromatic amines exhibit excellent regioselectivity for preferential nucleophilic attack at the sterically less hindered position during the reaction with unsymmetrical epoxides. However, in case of styrene oxide, selective formation of the benzylic amine was observed during the reactions with aromatic amines.  相似文献   

17.
Sulfamic acid (SA) catalyses the nucleophilic opening of epoxide rings by amines leading to the efficient synthesis of ß-amino alcohols. The reaction works well with aromatic and aliphatic amines in short reaction times and in the absence of solvent. Exclusive trans stereoselectivity is observed for the ring opening of cyclohexene oxide. This method exhibits excellent regioselectivity for preferential nucleophilic attack at the less hindered position during the reaction with unsymmetrical epoxides.  相似文献   

18.
Nickel-catalyzed, intramolecular and intermolecular reductive coupling of alkynes and epoxides affords synthetically useful homoallylic alcohols of defined alkene geometry. Very high regioselectivity is generally observed, and cyclizations proceed with complete selectivity for endo epoxide opening. This catalytic reaction represents the first use of a non-pi-based electrophile in a growing class of nickel-catalyzed, multicomponent coupling reactions, and is the first catalytic method of reductive coupling of alkynes and epoxides that is effective for both intermolecular and intramolecular cases, and mechanistically distinct from these, possibly involving a nickella(II)oxetane.  相似文献   

19.
Summary. In contrast to a previous report, o-phenylenediamine is not a catalyst in the ring opening reaction of epoxides by means of bromine or iodine. The o-phenylenediamine is just a reactant which reacts with iodine to give phenazine-2,3-diamine and hydrogen iodide, or with bromine to give a mixture of brominated and polymerized products as well as hydrogen bromide. The hydrogen halogenides are in fact the real epoxide ring opening reactants.  相似文献   

20.
The kinetic resolution of a range of methyl-substituted 1-oxaspiro[2.5]octanes by yeast epoxide hydrolase (YEH) from Rhodotorula glutinis has been investigated. The structural determinants of substrate specificity and stereoselectivity of YEH toward these substrates appeared to be the configuration of the epoxide ring and the substitution pattern of the cyclohexane ring. For all compounds tested, O-axial epoxides were hydrolyzed faster than the corresponding O-equatorial compounds. In concern of the ring substituents, YEH preferred methyl groups on the Re side of the ring. Placement of substituents close to the spiroepoxide carbon decreased the reaction rate but increased enantioselectivity. YEH-catalyzed kinetic resolutions of 4-methyl 1-oxaspiro[2.5]octane epimers were most enantioselective (E > 100).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号