首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The halogen redistribution reaction in the binary [nBu2SnCl]2O/[nBu2SnBr]2O system is examined by 119Sn- and 13C-NMR spectroscopy. Binary mixtures of [nBu2SnCl]2O and [nBu2SnBr]2O reach equilibrium rapidly at room temperature. The reactant dimers are found to be in equilibrium with all five possible mixed distannoxane dimers in the equimolar mixture. These mixed distannoxane dimers differ in the ratio of Cl and Br as well as the relative positioning of the halogens. The mechanism responsible for the rapid formation of the mixed Cl:Br distannoxane dimers is found to proceed via bimolecular collisions producing a four-centered transition state, which in turn undergoes a concerted exchange of the halogens. The equilibrium concentrations of the reactant and product dimers are well represented by a statistical distribution, indicating that Cl and Br exhibit equivalent donor abilities. At 298 K, the NMR spectral data are consistent with time-averaged structures arising from rapidly interconverting rigid ladder pairs. Lowering the temperature to 173 K failed to freeze out this fluxional process. A reversible configurational rearrangement is also observed in which rotation about the oxygen---exocyclic tin bond results in the mutual exchange of halogens associated with the same exocyclic tin atom.  相似文献   

2.
A new tetranuclear organotin carboxylate {[(n‐Bu2SnO)2L]2}n (complex 1 ) was synthesized by the reaction of di‐n‐butyltin oxide with (p‐carboxymethoxy‐phenoxy) acetic acid (LH2) and characterized by elemental analyses: IR, UV–visible, 1H, 13C, 119Sn NMR spectroscopy and single crystal X‐ray study. X‐ray crystallography diffraction data revealed that the complex 1 was polymeric fashion with a chain structure containing a ladder‐like tetranuclear organo‐oxotin cluster. In the complex 1 , the ligand LH2 is coordinated to the central tin(IV) atoms via the carboxylato‐O atoms. The tetranuclear tin system is formed by the bridges through the carbonyl oxygen atom of the carboxylate moieties and making the tin atom of pentacoordinated in distorted trigonal bipyramidal geometry. Single crystal X‐ray data indicate that the complex 1 crystallized in the cubic system with the space group C2/c.  相似文献   

3.
Five novel organotin complexes with the anthraquinone dyes alizarin (1,2‐dihydroxyanthraquinone) and purpurin (1,2,4‐trihydroxyanthraquinone) were synthesized and characterized by elemental analyses, FTIR and NMR spectroscopy (1H, 13C and 119Sn). The crystal and molecular structures of four complexes were determined by X‐ray diffraction on single crystals: [Bu2Sn(aliz)(H2O)]·C2H5OH ( A1 ·EtOH), [Bu2Sn(aliz)(dmso)]2 ( A3 ), [(Bu2Sn)3O(Hpurp)2] ( P1 ) and [Bu2Sn(Hpurp)(dmso)]2 ( P2 ), where H2aliz = alizarin and H3purp = purpurin. The coordination mode of the ligands is identical to that found in their Al/Ca complexes, where they act as dianionic tridentate ligands forming five and six‐membered fused chelate rings. The coordination to the tin atoms occurs exclusively via the 1,2‐ phenolate oxygen and the adjacent quinoid oxygen atoms. The complexes A1 , A3 and P1 are dimers with hepta‐coordinated tin atoms in form of a slightly distorted pentagonal bipyramid. The trinuclear complex P2 contains two pentacoordinated and one heptacoordinated tin atoms.  相似文献   

4.
Reaction of dithioacid (ArCS2CH2CO2H, Ar = phenyl, 2‐furyl or 2‐thienyl) with nBu2SnO gives monomeric (ArCS2CH2CO2)2Sn(Bun)2 in a 2:1 molar ratio, and dimeric {[(ArCS2CH2CO2)Sn(Bun)2]2O}2 in a 1:1 molar ratio, respectively, which have been characterized by IR, NMR (1H, 13C and 119Sn) spectra and elemental analyses. X‐ray crystal structure analyses indicate that the compound [(C4H3S)CS2CH2CO2]2Sn(Bun)2 is monomeric with the tin atom occupying a skew‐trapezoidal bipyramidal geometry. In addition, this compound forms a three‐dimensional structure through the weak intermolecular SS and SnO interactions. Compound {[((C4H3S)CS2CH2CO2)Sn(Bun)2]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which the coordination modes of the two crystallographically unique carboxylic ligands are different. One acts as monodentate ligand by the carboxylate oxygen atom, the other bridges two tin atoms via only one carboxylate oxygen atom. Furthermore, each tin atom in this compound locates a distorted trigonal bipyramidal geometry. Biological activities of these organotin compounds show that they have hardly acaricidal activity, but display certain activities on fungi. In mononuclear tin compounds, the inhibition percentage of [(C4H3S)CS2CH2CO2]2Sn(Bun)2 in vitro for Alternaria solani and Physolospora piricola is 57.1% and 43.9%, respectively, while in dimers {[((C4H3O)CS2CH2CO2)Sn(Bun)2]2O}2 shows high inhibition percentage for Gibbereila zeae (52.6%) and Physolospora piricola (50.0%), respectively. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

5.
Reactions of 5-[(E)-2-(aryl)-1-diazenyl]-2-hydroxybenzoic acids (LHH′, where the aryl group is an R-substituted phenyl ring such that for L1HH′: R = H; L2HH′: R = 2′-CH3; L3HH′: R = 3′-CH3; L4HH′: R = 4′-CH3; L5HH′: R = 4′-Cl; L6HH′: R = 4′-Br) with nBu2SnO in a 1:1 molar ratio yielded complexes of composition {[nBu2Sn(LH)]2O}2. The complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of {[nBu2Sn(L1H)]2O}2 (1), {[nBu2Sn(L4H)]2O}2 (4), {[nBu2Sn(L5H)]2O}2 (5) and {[nBu2Sn(L6H)]2O}2 (6) were determined. The compounds are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The four carboxylate ligands display two different modes of coordination where both modes involve bridging of two structurally distinct Sn-atoms. The solution structures were confirmed by 119Sn NMR spectroscopy by observing two tin resonances in compounds 1, and 4-6. The observed difference between the two tin resonances was about 3 ppm while the differences in 13C resonances were even smaller. Compounds {[nBu2Sn(L2H)]2O}2 (2) and {[nBu2Sn(L3H)]2O}2 (3) undergo a very complex exchange processes in deuteriochloroform solution. The in vitro cytotoxic activity of compounds 1 and 4 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumour cell lines is reported.  相似文献   

6.
Some five- and six-coordinated di and tri-n-butyl tin(IV) semi- and thio-semi carbazates have been synthesized. The characterization of these complexes, by IR, NMR (1H, 13C, 119Sn), 119Sn), 119Sn Mössbauer and Mass spectroscopies along with X-ray diffraction, reveals that complexes of biionic ligands of the type Bu2Sn L″ are five-coordinated having trigonal bipyramidal geometry. However, complexes of monoionic ligands of the type Bu2SnL′2 are six-coordinated in a distorted cis-octahedral geometry and Bu3SnL′ are five-coordinated with a trigonal bipyramidal structure. X-ray structural studies on the compound Bu2Sn(O.C6H4.CH:N.N.CS.NH2), show that it crystallizes in a monoclinic lattice with a = 16.90 Å, b = 9.71 Å, c = 8.60 Å, and β = 103°45′.  相似文献   

7.
The organophosphonate-substituted alkoxides [Bu4nN]2[{Ti(OMe)3(O3PPh)}2] (1) and [Bu4nN]2[{Nb(OMe)3(O3PPh)}2(μ-O)] (2) have been prepared from [Bu4nN][PhPO3H] and the metal alkoxides Ti(OMe)4 or Nb(OMe)5 respectively. In 1, the bridging phenylphosphonates occupy trans coordination sites, whereas in 2, a cis–bridging geometry is adopted.  相似文献   

8.
Ten di-n-butyltin(I∇) carboxylates [(nBu2Sn-OCOR′)2O]2 and nBu2Sn(OCOR′)2 (R′ = CCl3, CHCl2, CH2Cl, PhCH = CH, and 2,2,3,3-tetramethylcyclopropyl) were synthesized and characterized by IR, 1H, 13C, 119Sn NMR spectroscopy and elemental analysis. Together with other series of organotin(I∇) carboxylates, their structural features were discussed. The relationship between the 119Sn NMR chemical shifts in the organotin(I∇) carboxylates [(nBu2SnOCOR′)2O]2, nBu2Sn(OCOR′)2, nBu3SnOCOR′, Ph3SnOCOR′ and the pKa values of their parent acids R′COOH was studied. The results have shown that the log[-δ(119Sn)] of the same series of carboxylates is linearly related to the pKa of R′COOH. It seems that the better is the linearity between the log[−δ(119Sn)] and the pKa, the more analogous are the structures of the same series of carboxylates. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The synthesis and characterization of rare 1,3-diphosphacyclobutene transition-metal complexes is described. Reactions of the cobalt-hydride complex [Co(P2C2tBu2)2H] ( G ) with nBuLi, tBuLi, or PhLi afforded [Li(solv)x{Co(η3-P2C2tBu2HR)(η4-P2C2tBu2)}] ( 1 : R=nBu, (solv)x=(Et2O)2; 2 : R=tBu, (solv)x=(thf)2; 3 : R=Ph, (solv)x=(Et2O)(thf)2), with an η3-coordinated 1,3-diphosphacyclobutene ligand as a result of organyl-anion attack at one of the phosphorus atoms of the bis(1,3-diphosphacyclobutadiene) backbone. In contrast to the reactions with PhLi, the aryl-magnesium compounds p-tolyl magnesium chloride and p-fluorophenyl magnesium bromide deprotonate [Co(P2C2tBu2)2H] to give the magnesium salt [Mg(MeCN)6][Co(η4-P2C2tBu2)2]2 ( 4 ), which contains a bis(1,3-diphosphacyclobutadiene)-cobaltate anion. The [Co(η4-P2C2tBu2)2] anions are well separated from the octahedral [Mg(MeCN)6]2+ cation in the molecular structure of 4 . Compound 1 reacts with Me3SiCl to give neutral [Co(η3-P2C2tBu2HnBu)(η4-P2C2tBu2SiMe3)] ( 5 , 52 % yield) with an SiMe3 group attached to one of the P atoms of the previously unfunctionalized backbone.  相似文献   

10.
Ionic compounds, [Q] [R2SnX(dmit)][dmit=1,3-dithiole-2-thione-dithiolate; Q=1,4-dimethylpyridinium or tetraalkylammonium; R=Phor alkyl; X=Cl, Br, I, NCS, NCSe, or N3] have been obtained by (a) from R2SnX2 and [Q]2[Zn(dmit)2] in the presence of excess QX,(b) from halide exchange reactions in acetone solution between [Q] [R2SnCl(dmit)]and a halide or pseudohalide source, or (c) by addition of QX to [R2Sn(dmit)]. Crystalstructure determinations of [NEt4] [Ph2SnI(dmit)] and [1,4-Me2pyridiniuml [Ph2SnBr(dmit)] as well as of the mixed halides, [1a, 1b, 4a, 2] [Ph2SnClnI1−n(dmit)] (n=0.57, 0.42 or0.22), indicated that the tin atoms have distorted trigonal bipyramidal geometries in the anions,with the X ligand and a dithiolato atom in the axial sites. The [R2SnX(dmit)] anions remain essentially intact in organic solvents, but lose X on extractionwith H2O to give the neutral species, R2Sn(dmit).  相似文献   

11.
Reactions of potassium β-{[(E)-1-(2-hydroxyaryl)alkylidene]amino}propionates (L1HK-L3HK) and potassium β-{[(2Z)-(3-hydroxy-1-methyl-2- butenylidene)]amino}propionate (L4HK) with R3SnCl (R = Ph and nBu) and nBu2SnCl2 yielded complexes of composition Ph3SnL1H (1), Ph3SnL2H (2), Ph3SnL4H (3), nBu3SnL1H (4), and {[nBu2Sn(L2H)]2O}2 (5) and {[nBu2Sn(L3H)]2O}2 (6), respectively. These complexes have been characterized by 1H, 13C, 119Sn NMR, ESI-MS, IR and 119mSn Mössbauer spectroscopic techniques in combination with elemental analyses. The crystal structures of 1, 4, 5 and 6 were determined. In the solid state, compound 1 is a one-dimensional polymer built from SnPh3 moieties bridged by single carboxylate ligands, but two alternating modes of bridging are present along the polymeric chain. Compound 4 is also a one-dimensional polymer built from SnBu3 moieties bridged by the two carboxylate O-atoms of a single ligand, but only one mode of bridging is present. Di-n-butyltin compounds 5 and 6 are centrosymmetric tetranuclear bis(dicarboxylatotetrabutyldistannoxane) complexes containing a planar Sn4O2 core in which two μ3-oxo O-atoms connect an Sn2O2 ring to two exocyclic Sn-atoms. The four carboxylate ligands display two different modes of coordination where both modes involve bridging of two Sn-atoms. The solution structures were predicted by 119Sn NMR spectroscopy. The in vitro cytotoxic activity of compound 5 against WIDR, M19 MEL, A498, IGROV, H226, MCF7 and EVSA-T human tumor cell lines is reported.  相似文献   

12.
Reaction of bis(pyrazol‐1‐yl)acetic acid with n‐Bu2SnO in a 1:1 molar ratio gives dimeric bis[dicarboxylatotetraorganodistannoxanes], {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 (Pz = pyrazol‐1‐yl or 3,5‐dimethylpyrazol‐1‐yl), which are characterized by IR and NMR (1H, 13C and 119Sn) spectra and elemental analyses. The X‐ray crystal structure analyses indicate that {[(n‐Bu)2(Pz2CHCO2)Sn]2O}2 is a centrosymmetric dimer with a cyclic Sn2O2 unit, in which each tin atom is situated in a distorted trigonal bipyramidal geometry. In addition, bis(3,5‐dimethylpyrazol‐1‐yl)acetic acid in the solid state forms a dimer through two intermolecular O? H···N hydrogen bonds. These organotin derivatives display low fungicide, insecticide and miticide activities, but display certain cytotoxicities for Hela cells in vitro. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
The reaction of triorganotin(IV) compound Ph2LSnCl (1), (L = 2,6-(t-BuOCH2)2C6H3), with (Bu3Sn)2O resulted to the isolation of Ph2LSn(μ-OH)Bu3SnCl (2), in which a monomeric triorganotin(IV) hydroxide Ph2LSnOH intermolecularly coordinates Bu3SnCl moiety. Compound 2 was characterized by combination of 1H, 13C and 119Sn NMR spectroscopy, ESI/MS, elemental analysis and X-ray diffraction.  相似文献   

14.
Five new organotin(IV) complexes of composition [Bz2SnL1]n ( 1 ), [Bz3SnL1H⋅H2O] ( 2 ), [Me2SnL2⋅H2O] ( 3 ), [Me2SnL3] ( 4 ) and [Bz3SnL3H]n ( 5 ) (where L1 = (2S )‐2‐{[(E )‐(4‐hydroxypentan‐2‐ylidene)]amino}‐4‐methylpentanoate, L2 = (rac )‐2‐{[(E )‐1‐(2‐hydroxyphenyl)methylidene]amino}‐4‐methylpentanoate and L3 = (2S )‐ or (rac )‐2‐{[(E )‐1‐(2‐hydroxyphenyl)ethylidene]amino}‐4‐methylpentanoate) were synthesized and characterized using 1H NMR, 13C NMR, 119Sn NMR and infrared spectroscopic techniques. The crystal structure of 2 reveals a distorted trigonal‐bipyramidal geometry around the tin atom where the oxygen atoms of the carboxylate ligand and a water ligand occupy the axial positions, while the three benzyl ligands are located at the equatorial positions. On the other hand, the analogous derivative of enantiopure L3H ( 5 ) consists of polymeric chains, in which the ligand‐bridged tin atoms adopt the same trans ‐Bz3SnO2 trigonal‐bipyramidal configuration and are now coordinated to a phenolic oxygen atom instead of H2O. In 2 , the OH hydrogen of the ketoimine substituent has moved to the nearby nitrogen atom while in the salicylidene derivative 5 , the OH is located almost midway between the phenolic oxygen atom and the nitrogen atom of the CN group. For the dibenzyltin derivative 1 , a polymeric chain structure is observed as a result of a long intermolecular Sn⋅⋅⋅O bond involving the exocyclic carbonyl oxygen atom from the tridentate ligand of a neighbouring tin‐complex unit. The tin atom in this complex has distorted octahedral coordination geometry. In contrast, the racemic dimethyltin(IV) complexes 3 and 4 display discrete monomeric structures with a distorted octahedral‐ and trigonal‐bipyramidal geometry, respectively. The structures show that the coordination mode of the Schiff base ligand depends primarily on the number of bulky benzyl ligands (R) at the tin atom, as indeed found in the structures of related complexes where R = phenyl. With three bulky R groups, the tridentate chelating O,N,O coordination mode is preferred, whereas with fewer or less bulky R ligands, only the carboxylate and hydroxy groups are involved, which leads to polymers. Larvicidal efficacies of two of the new tribenzyltin(IV) complexes ( 2 and 5 ) were assessed on the second larval instar of Anopheles stephensi mosquito larvae and compared with two triphenyltin(IV) analogues, [Ph3SnL1H]n and [Ph3SnL3H]n . The results demonstrate that the compounds containing Sn–Ph ligands are more effective than those with Sn–Bz ligands. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
Novel heteroscorpionate-containing tin and organotin(IV) complexes, [SnRnX3 − n(L)], R = Me, Bun, Ph, or cy; X = Cl, Br or I, n = 0, 1, 2 or 3; L = bis(pyrazol-1-yl)acetate (bpza) or bis(3,5-dimethylpyrazol-1-yl)acetate (bdmpza), have been synthesized and characterized by spectral (IR, 1H, 13C and 119Sn NMR, 119mSn Mössbauer) and analytical data. In [SnI3(bdmpza)], the ligand is fac-N,N′,O-tridentate, the three iodine atoms thus also fac about the six-coordinate tin(IV) atom. Neutral bpzaH reacts with BunSnCl3, PhSnCl3 and SnCl4 in Et2O in the absence of base, yielding 1:1 adducts [XSnCl3(bpzaH)] (X = R or Cl).  相似文献   

16.
Open‐Chain and Cyclic As‐functionalized Stannylarsines: Synthesis, Reactions, and Structure tBu3SnAsH2 ( 1 ) reacts with MeLi to form the lithium compound tBu3SnAsHLi which reacts with tBu2SnCl2 to give the AsH‐functionalized bis(arsino)stannane tBu2Sn(AsHSntBu3)2 ( 2 ). Metallation of diarsadistannetane (tBu2SnAsH)2 ( 3 ) with two equivalents of tBuLi yields the dilithio compound (tBu2SnAsLi)2 which reacts with Me3SiCl or Me3SnCl to give the corresponding As,As′‐bis‐substituted diarsadistannetanes (tBu2SnAsSiMe3)2 ( 4 ) and (tBu2SnAsSnMe3)2 ( 5 ), respectively. The novel compounds are characterized by NMR (1H, 119Sn) and mass spectroscopy, ring compounds 4 and 5 further by X‐ray structure analysis. In the solid state both ring compounds contain molecules with planar tin‐arsenic rings and two trans‐configurated Me3Si‐ or Me3Sn‐ring substituents (space group P21/n (No. 14), Z = 2).  相似文献   

17.
The diorganotin(IV) compounds, [Me2SnL2(OH2)]2 (1), [nBu2SnL2(OH2)]2 (2), [nBu2SnL1]3 · 0.5C3H6O (3), [nBu2SnL3]3 · 0.5C6H6 (4) and [Ph2SnL3]n · 0.5C6H6 (5) (L = carboxylic acid residue, i.e., 2-{[(E)-1-(2-oxyaryl)alkylidene]amino}acetate), were synthesized by treating the appropriate diorganotin(IV) dichloride with the potassium salt of the ligand in anhydrous methanol.The reaction of Ph2SnL2 (L = 2-{[(E)-1-(2-oxyphenyl)ethylidene]amino}acetate) with 1,10-phenanthroline (Phen) yielded a 1:1 adduct of composition, [Ph2SnL2(Phen)] (6).The crystal structures of 1-6 were determined.The crystal of 1 is composed of centrosymmetric dimers of the basic Me2SnL2(OH2) moiety, where the two Sn-centres are linked by two asymmetric Sn-O?Sn bridges involving the carboxylic acid O atom of the ligand and a long Sn?O distance of 3.174(2) Å.The dimers are further linked into columns by hydrogen bonds.The coordination geometry about the Sn atom is a distorted pentagonal bipyramid with the two methyl groups in axial positions.The structure of 2 is similar.The same Sn atom coordination geometry is observed in compound 3, which is a cyclic trinuclear[nBu2SnL1]3 compound. Each Sn atom is coordinated by the phenoxide O atom, one carboxylate O atom and the imino N atom from one ligand and both the exo- and endo-carboxylate O atoms (mean Sn-O(exo): 2.35 Å; Sn-O(endo): 2.96 Å) from an adjacent ligand to form the equatorial plane, while the two butyl groups occupy axial positions. Compound 4 was found to crystallize in two polymorphic forms. The Sn-complex in both forms has a trinuclear [nBu2SnL3]3 structural motif similar to that found in 3. In compound 5, distorted trigonal bipyramidal Ph2SnL3 units are linked into polymeric cis-bridged chains by a weak Sn?O interaction (3.491(2) Å) involving the exocyclic O atom of the tridentate ligand of a neighboring Sn-complex unit. This interaction completes a highly distorted octahedron about the Sn atom, where the weakly coordinated exocyclic O atom and one phenyl group are trans to one another. In contrast, a monomeric distorted pentagonal bipyramidal geometry is found for adduct 6 where the Sn-phenyl groups occupy the axial positions. The solution and solid-state structures are compared by using 119Sn NMR chemical shift data. Compounds 1-6 were also studied using ESI-MS and their positive- and negative-ions mass fragmentation patterns are discussed.  相似文献   

18.
Four new complexes, [Ph3Sn(isopropylACDA)] (1), [Ph2SnCl(isopropylACDA)] (2), [Ph3Sn(secbutylACDA)] (3), and [Ph2SnCl(secbutylACDA)] (4), have been prepared from reaction between N-alkylated 2-amino-1-cyclopentene-1-carbodithioic acids (ACDA) with Ph2SnCl2 and Ph3SnCl in 1:1 ratio. All complexes are characterized by FTIR, multinuclear NMR (1H, 13C, and 119Sn) and mass spectrometry. In all complexes, the S–H proton has been removed and coordination takes place through the carbodithioate moiety. The 119Sn NMR data are consistent with five coordination of tin atom in solution. Complexes 2, 3, and 4 have also been confirmed by single X-ray crystallography. All three crystals are triclinic with space group P − 1. In complexes 2 and 4, the geometry around tin atom is distorted trigonal bipyramidal while in 3 the geometry is in between distorted tetrahedral and trigonal bipyramid. In all three structures, ligands are asymmetrically coordinated to tin atom. In addition, crystal structures are further stabilized by N–H···S hydrogen bonding.  相似文献   

19.
Crystal structure determinations of {[(F5C6COO)Bu2Sn]2O}2 and {[(4-F-C6H4COO)-Bu2Sn]2O}2 show that the structures are similar and feature central Bu4Sn2O2 units with two Bu2Sn groups connected by bridging oxygen atoms. Each pair of exo- and endo-cyclic tin atoms is linked by an almost symmetrically bridging carboxylate group, with the two remaining groups attached to the exocyclic tin atom only. Crystals of {[(F5C6COO)Bu2Sn]2O}2 are triclinic, space group P1, with unit cell dimensions a = 12.425(3) Å, b = 13.090(5) Å, c = 11.697(3) Å, α = 95.31(3)°, β = 93.28(2)°, γ = 113.01(2)°, V = 1734(1) Å3, Z = 1. Crystals of {[(4-F-C6H4COO)Bu2Sn]2O}2, are also triclinic, space group PI, a = 12.599(6) Å, b= 25.359(4) Å, c = 11.480(4) Å, α = 91.44(3)°, β = 114.77(3)°, γ=97.43(3)°, V=3289(2) Å3, Z=2. The structures were refined to final R= 0.046, Rw = 0.046 for 4312 reflections with I≥ 3.0 σ(l) for {[(F5C6COO)Bu2Sn]2O}2 and R=0.061, Rw=0.068 for 4112 reflections with l≥3.0 σ(l for {[(4-F-C6H4COO)Bu2Sn]2O}2.  相似文献   

20.
The structures of two complexes, [Ph3PCH2Ph]+[Bu3SnCl2] and [Ph3AsCH2COPh]+[Ph3SnCl2], have been determined by X-ray diffraction. Both materials are monoclinic, space group P21/c. Unit cell data for [Ph3PCH2Ph]+−[Bu3SnCl2] are a 9.8521(6), b 16.9142(4), c 22.3517(7) Å, β 91.4235(9)°; and for [Ph3AsCH2COPh]+[Ph3SnCl2] a 34.9760(3), b 11.1290(5), c 24.2410(2) Å, β 108.56(2)°, and both consist of the component ionic species. The organotin anions each have trigonal bipyramidal geometry with equatorial organic groups and axial halogens. In the [Ph3SnCl2] anion the two Sn---Cl bond distances are the same (2.58(1) and 2.60(1) Å), but in [Bu3SnCl2], as in [Me3SnCl2], they are substantially different (2.573(7) and 2.689(6) Å). The Sn---C bond distances also vary: [Ph3SnCl2] 2.15(4), 2.16(3) and 2.25(5); [Bu3SnCl2] 2.21(1), 2.20(2) and 2.29(2) Å. Tin-119 Mössbauer data for these and several other similar complexes are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号