首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work reports the growth effects induced by static and sinusoidal 50 Hz magnetic fields (MF) on the haploid yeast strain Saccharomyces cerevisiae WS8105-1C. Magnetic fields were generated by a pair of Helmholtz coils (40 cm in diameter) with 154 turns of copper wire in each and separated 20 cm. The experiments were performed at 0.35 and 2.45 mT, and yeasts were exposed to MF during 24 and 72 h in the homogeneous field area. Growth was monitored by measuring the optical density at 600 nm. The data presented in the current report indicate that static and sinusoidal 50 Hz MF (0.35 and 2.45 mT) do not induce alterations in the growth of S. cerevisiae.  相似文献   

2.
A set of physicochemical analysis methods showed that GaSb and MnSb form a eutectic at 41 mol % MnSb and T melt = 632°C. The eutectic is of the platelet type and has metallic conduction. The eutectic GaSb + MnSb is a composite ferromagnetic with a Curie temperature of ~600 K. The behavior of the electrical resistance in a magnetic field is complex. At low magnetic fields up to 0.8 T, the resistance abruptly drops, and at high magnetic fields, it slowly increases. Such behavior occurs both at low temperatures (5 K) and at 300 K. The change of the trend in the resistance takes place at the magnetic field at which there is magnetization saturation in the magnetic field dependences. Such a dependence of the resistance on the magnetic field is explained by a change of the mechanism of scattering of charge carriers.  相似文献   

3.
This work studies biological effects of low-frequency electromagnetic fields. We have exposed three different bacterial strains-Escherichia coli, Leclercia adecarboxylata and Staphylococcus aureus to the magnetic field (t<30 min, B(m)=10 mT, f=50 Hz) in order to compare their viability (number of colony-forming units (CFU)). We have measured the dependence of CFU on time of exposure and on the value of the magnetic field induction B(m). Viability decreases with longer exposure time and/or higher induction B(m) for all strains, but the quantity of the effect is strain-dependent. The highest decrease of the viability and the biggest magnetic field effect was observed with E. coli. The smallest magnetic field effect appears for S. aureus. From the measurement of the growth dynamics we have concluded that the decrease of the CFU starts immediately after the magnetic field was switched on.  相似文献   

4.
Effects of low-frequency magnetic fields on bacteria Escherichia coli.   总被引:5,自引:0,他引:5  
The effects of low-frequency magnetic fields (Bm=2.7-10 mT, f=50 Hz, time of exposure t=0-12 min, laboratory temperature) on the viability and oxidoreductive activity of gram-negative bacteria Escherichia coli were investigated. The growth of these bacteria was negatively affected by such fields. We compared two experimental systems--solenoid [Sb. Lek. 99 (1998) 455] and a cylindrical spool--to find differences between nonhomogeneous and "more homogeneous" magnetic fields. We observed analogous effects in both experimental conditions. The growth curve of the exposed bacteria was lower than the control one. The ability of bacteria to form colonies decreased with increasing magnetic field intensity and with increasing time of exposure. The oxidoreductive activity was measured using reduction of a tetrazolium salt. The decrease in oxidoreductive activity with increasing time of exposure was observed, but the effect was due to a lower amount of bacteria surviving the exposure to the magnetic fields. The decrease in oxidoreductive activity and ability to form colonies were compared with the assumption that the effect of magnetic field is probably bactericidal.  相似文献   

5.
Using Raman spectroscopy, the authors have investigated the aggregation/disgregation of magnetic nanoparticles in dense ionic ferrofluids (IFF) into clusters due to the action of an inhomogeneous external magnetic field. Evidence for changes in particle density and/or effective cluster size were obtained from the variation of the Raman intensity in a time window from 10 s to 10 min for magnetic fields up to 350 mT and at a temperature of 28 degrees C. Clustering sets in already at very low fields (>15 mT) and the IFF samples exhibit a clear hysteresis in the Raman spectra after releasing the magnetic field, which lasts for many hours at room temperature. The authors determined the characteristic times of the two competing processes, that of field-induced cluster formation and, at room temperature, that of thermal-activated dissociation, to range from 100 to 150 s.  相似文献   

6.
The specific heat capacity of a magnetite-based magnetic fluid and changes in the magnetic part of the molar heat capacity of its magnetic phase in magnetic fields of 0–0.7 T were determined calorimetrically over the temperature range 288–353 K. The temperature dependence of changes in the magnetic part of entropy in an applied magnetic field was calculated. It was found that the field dependence of heat capacity had a maximum in fields of 0.3–0.4 T, and the temperature dependences of changes in the magnetic part of heat capacity ΔC p (H) and entropy ΔS m(H) had maxima at the magnetic phase transition temperature.  相似文献   

7.
We present the results of the first experimental observation of unusual paramagnetism in solid when magnetic susceptibility of paramagnetic centers doesn't depend on temperature but drastically decreases when the applied magnetic field increases. This unusual combination of the field and temperature dependences of magnetic susceptibility was observed in the studies of magnetization and magnetic susceptibility performed in the wide range of temperatures (1.7–300 K) and magnetic fields (0–5.0 T) on the bulk and surface PbTe powder samples manufactured from crystal ingots grown by Bridgman method out of high-purity Pb and Te. We believe that presence of these features indicate that we are dealing with unknown untypical paramagnetism of paramagnetic centers in solid. We observed that the concentration of such unusual paramagnetic centers in PbTe crystal ingots increases towards their surface. Increase of the concentration of the centers can be so strong that it causes a transition of PbTe from the diamagnetic state to the paramagnetic one in quite wide range of low magnetic fields. Possible nature of the observed unusual paramagnetic centers is discussed.  相似文献   

8.
We used scattering dichroism to study the dynamics of dipolar chains induced in magnetorheological suspensions under rotating magnetic fields. Both the dichroism (proportional to the total number of aggregated particles) and the phase lag show different behavior below and above a cross-over frequency. The cross-over frequency depends linearly on both the square of the magnetization and the inverse of the viscosity. The Mason number (ratio of viscous to magnetic forces) governs the dynamics. Therefore, there is a cross-over Mason number below which the dichroism remains almost constant and above which the rotation of the field prevents the particle aggregation process from taking place. Our experimental results have been compared with particle dynamics simulations showing good agreement.  相似文献   

9.
Magnetic fields were found to increase the photocurrent in poly-N-vinylcarbazole (PVCz) films by up to 5–6% at 1 kG. This positive magnetic field effect was sensitive to both applied voltage and temperature, and was enhanced with dimethyl-terephthalate (DMTP) doping by a factor of two. Magnetic fields were also found to increase the prompt exciplex fluorescence of PVCz films doped with DMTP by up to 2% at 500 G. The observations made clear that a carrier generation process via an exciplex state has an important role in photo-carrier generation even in undoped PVCz films.  相似文献   

10.
The heat capacity of the title organic free radical, PhBABI, was measured over 0.3-300 K by adiabatic calorimetry and relaxation methods in the presence of external magnetic fields up to 9 T. A hump in the magnetic heat capacity was observed with a maximum at about 15 K in zero field, which did not shift at fields up to 9 T. The experimental magnetic entropy was in good agreement with the theoretical value of R ln 2 (= 5.76 J K(-1) mol(-1)) for S = 1/2 systems. The higher temperature, field-insensitive feature was fitted to several antiferromagnetic Heisenberg models. The best fits were obtained using spin ladder and coupled spin bilayer models.  相似文献   

11.
Magnetorheological Elastomers (MREs) are “smart” materials whose physical properties are altered by the application of magnetic fields. In previous studies the properties of MREs have been evaluated under a variety of conditions, however little attention has been paid to the recording and reporting of the magnetic fields used in these tests [1]. Currently there is no standard accepted method for specifying the magnetic field applied during MRE testing. This study presents a detailed map of a magnetic field applied during MRE tests as well as providing the first comparative results for uniaxial and biaxial testing under high strain fatigue test conditions. Both uniaxial tension tests and equi-biaxial bubble inflation tests were performed on isotropic natural rubber MREs using the same magnetic fields having magnetic flux densities up to 206 mT. The samples were cycled between pre-set strain limits. The magnetic field was switched on for a number of consecutive cycles and off for the same number of following cycles. The resultant change in stress due to the application and removal of the magnetic field was recorded and results are presented.  相似文献   

12.
The phenomenon of nuclear magnetic resonance (NMR) is widely applied in biomedical and biological science to study structures and dynamics of proteins and their reactions. Despite its impact, NMR is an inherently insensitive phenomenon and has driven the field to construct spectrometers with increasingly higher magnetic fields leading to more detection sensitivity. Here, we are demonstrating that enzymatic reactions can be followed in real-time at millitesla fields, three orders of magnitude lower than the field of state-of-the-art NMR spectrometers. This requires signal-enhancing samples via hyperpolarization. Within seconds, we have enhanced the signals of 2-13C-pyruvate, an important metabolite to probe cancer metabolism, in 22 mM concentrations (up to 10.1% ± 0.1% polarization) and show that such a large signal allows for the real-time detection of enzymatic conversion of pyruvate to lactate at 24 mT. This development paves the pathways for biological studies in portable and affordable NMR systems with a potential for medical diagnostics.

We demonstrate that metabolism can be monitored in real-time with magnetic resonance at milli-tesla fields that are 1000 fold lower than state-of-the-art high field spectrometers.  相似文献   

13.
In this study, flexible silk fibroin protein and biocompatible barium hexaferrite (BaM) nanoparticles were combined and electrospun into nanofibers, and their physical properties could be tuned through the mixing ratios and a water annealing process. Structural analysis indicates that the protein structure of the materials is fully controllable by the annealing process. The mechanical properties of the electrospun composites can be significantly improved by annealing, while the magnetic properties of barium hexaferrite are maintained in the composite. Notably, in the absence of a magnetic field, cell growth increased slightly with increasing BaM content. Application of an external magnetic field during in vitro cell biocompatibility study of the materials demonstrated significantly larger cell growth. We propose a mechanism to explain the effects of water annealing and magnetic field on cell growth. This study indicates that these composite electrospun fibers may be widely used in the biomedical field for controllable cell response through applying different external magnetic fields.  相似文献   

14.
A constant shear‐rate extrusion rheometer with an electro‐magnetized capillary die was utilized to investigate die swell behavior and flow properties of a polystyrene melt as the application of an electro‐magnetic field to the capillary die was relatively novel in polymer processing. The test conditions such as magnetic flux density, barrel diameter, extrusion rate and die temperature were studied. The results suggest that the maximum swelling of the polystyrene melt with application of the electro‐magnetic field could be enhanced up to 2.6 times (260%) whereas that without the electro‐magnetic field was 1.9 times (190%). The barrel diameter of 30 mm was found to be a critical value in the case of the die swell ratio and flow properties of the polystyrene melt were significantly affected by the magnetic flux density. This involved the number and angle of magnetic flux lines around the barrel part. Under the electro‐magnetic field, there were two mechanical forces influencing the die swell ratio and the flow properties; magnetic torque and shearing force. The die swell at wall shear rates less than 11.2 sec?1 was caused by the magnetic torque, whereas at higher wall shear rates it was dependent on the shearing force. For a given magnetic flux density, the maximum increase in the die swell ratio as a result of the magnetic torque was calculated to be approximately 20%. Increasing the die temperature from 180 to 200°C reduced the overall die swell ratio and suppressed the effect of the magnetic flux density. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
The behavior of micrometer-sized weak magnetic insulating particles migrating in a conductive liquid metal is of broad interest during strong magnetic field processing of materials. In the present paper, we develop a numerical method to investigate the solid-liquid and particle-particle interactions by using a computational fluid dynamics (CFDs) modeling. By applying a strong magnetic field, for example, 10 Tesla, the drag forces of a single spherical particle can be increased up to around 15% at a creeping flow limit. However, magnetic field effects are reduced when the Reynolds number becomes higher. For two identical particles migrating along their centerline in a conductive liquid, both the drag forces and the magnetic interaction will be influenced. Factors such as interparticle distance, Reynolds number and magnetic flux density are investigated. Shielding effects are found from the leading particle, which will subsequently induce a hydrodynamic interaction between two particles. Strong magnetic fields however do not appear to have a significant influence on the shielding effects. In addition, the magnetic interaction forces of magnetic dipole-dipole interaction and induced magneto-hydrodynamic interaction are considered. It can be found that the induced magneto-hydrodynamic interaction force highly depends on the flow field and magnetic flux density. Therefore, the interaction between insulating particles can be controlled by applying a strong magnetic field and modifying the flow field. The present research provides a better understanding of the magnetic field induced interaction during liquid metal processing, and a method of non-metallic particles manipulation for metal/ceramic based materials preparation may be proposed.  相似文献   

16.
We consider the effect of applied magnetic fields on the diffusion of single dextran molecules labeled with fluorescein isothiocyanate within a ferrogel [a composite of magnetite nanoparticles in a poly(methacrylic acid) hydrogel] using fluorescence correlation spectroscopy. We show that the mesh size of the ferrogel is controlled by the applied magnetic field, B, and scales as exp(-(4)√ξ(3)B(2)/2μ(0)k(B)T), where ξ is a correlation length, μ(0) the magnetic constant, k(B) the Boltzmann constant, and T is the absolute temperature. The diffusion coefficient of the dextran can be modeled with a simple Stokes-Einstein law, containing the same scaling behavior with magnetic field as the swelling of the hydrogel. Furthermore, the magnetic field-dependent release of dextran from the hydrogel is also controlled by the same relationship. The samples were characterized by small angle x-ray scattering (SAXS) and magnetometry experiments. Magnetic hysteresis loops from these ferrogels and zero field cooled∕field cooled measurements reveal single domain ferromagnetic behavior at room temperature with a similar coercivity for both as-prepared and fully swollen ferrogels, and for increasing magnetic nanoparticle concentration. SAXS experiments, such as the hysteresis loops, show that magnetite does not aggregate in these gels.  相似文献   

17.
Constant magnetic fields affect many biological transformations, but we lack mechanistic understanding of the processes. The magnetohydrodynamic effect may account for the enhancement of bioelectrocatalytic transformations at interfaces. This is exemplified by the bioelectrocatalyzed cytochrome c-mediated reduction of oxygen and oxidation of lactate in the presence of cytochrome oxidase and lactate dehydrogenase, respectively. We observe significant magnetic field effects on the rates of bioelectrochemical transformations (ca. 3-fold increase) at the functionalized interfaces at field strengths, B, up to 1 T. We show that the limiting current is proportional to the B(1/3)C*(4/3), where C is the concentration of electroactive species. The results may have important implications on the understanding of the magnetic field effects on natural biocatalytic processes at membranes and on the enhancement of biotransformations in biotechnology.  相似文献   

18.
To study the effect of extremely low frequency (ELF) magnetic fields on cell growth, human cells (AMA cells) and K14 skin fibroblasts cells, growing in monolayer culture, were exposed to a sinusoidal 50 Hz, 80 μT field. Exposure times varied from 15 to 90 min. Changes in cell proliferation rates were then studied during subsequent field-free incubation, for 24 h.The results showed that a 30 min exposure resulted in a much higher increase in proliferation rates in the AMA cells compared with non-exposed cells or cells exposed to electromagnetic fields for shorter or longer times. The magnitude of the increase also depended on the initial proliferation rate and confluency. The exposure to varying field densities showed that the greatest increase in proliferation occurred at 80 μT.  相似文献   

19.

The effect of a magnetic field on heat and fluid flow of ferrofluid in a helical tube is studied numerically. The helical tube is under constant wall temperature boundary condition. Parametric studies are done to investigate the effects of different factors such as the magnetic field gradient value and Reynolds number on heat transfer rate and pressure drop. Results indicate that the magnetic field increases the Nusselt number by about 40%. At high magnetic gradient value, Nusselt number and friction factor rise slightly, while at low magnetic gradient value, the increment of Nusselt number is considerable. Furthermore, the growth of wall shear stress on tube wall results in lower thermal–hydraulic performance at the high magnetic gradient value. There is an optimum case for thermal–hydraulic performance which results in most top performance of helical tube in the presence of the magnetic field.

  相似文献   

20.
We have studied the effect of an alternating magnetic field on the growth rate of primary roots in Zea mays. Corn seedlings were grown in the dark, under constant conditions of temperature (25°C) and humidity (100%). They were also subjected to a 5 mT magnetic field, alternating at frequencies of either 5, 10, 20 or 40 Hz. The rate of primary root growth, in plants grown at each frequency, was measured and compared to a control group. Control plants were grown under similar conditions, in the absence of the magnetic field. The growth rate of primary roots in seedlings grown at each of the magnetic field frequencies used, was increased compared to the control group. The highest growth rate was seen in seedlings exposed to a magnetic field alternating at 10 Hz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号