首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flash photolysis of o-hydroxybenzyl alcohol, o-hydroxybenzyl p-cyanophenyl ether, and (o-hydroxybenzyl)trimethylammonium iodide in aqueous perchloric acid and sodium hydroxide solutions, and in acetic acid and biphosphate ion buffers, produced o-quinone methide as a short-lived transient species that underwent hydration back to benzyl alcohol in hydrogen-ion catalyzed (k(H+) = 8.4 x 10(5) M(-1) s(-1)) and hydroxide-ion catalyzed (k(HO)- = 3.0 x 10(4) M(-1) s(-1)) reactions as well as an uncatalyzed (k(UC) = 2.6 x 10(2) s(-1)) process. The hydrogen-ion catalyzed reaction gave the solvent isotope effect k(H+)/k(D)+ = 0.42, whose inverse nature indicates that this process occurs by rapid and reversible equilibrium protonation of the carbonyl oxygen atom of the quinone methide, followed by rate-determining capture of the carbocation so produced by water. The magnitude of the rate constant of the uncatalyzed reaction, on the other hand, indicates that this process occurs by simple nucleophilic addition of water to the methylene group of the quinone methide. Decay of the quinone methide is also accelerated by acetic acid buffers through both acid- and base-catalyzed pathways, and quantitative analysis of the reaction products formed in these solutions shows that this acceleration is caused by nucleophilic reactions of acetate ion rather than by acetate ion assisted hydration. Bromide and thiocyanate ions also accelerate decay of the quinone methide through both hydrogen-ion catalyzed and uncatalyzed pathways, and the inverse nature of solvent isotope effects on the hydrogen-ion catalyzed reactions shows that these reactions also occur by rapid equilibrium protonation of the quinone methide carbonyl oxygen followed by rate-determining nucleophilic capture of the ensuing carbocation. Assignment of an encounter-controlled value to the rate constant for the rate-determining step of the thiocyanate reaction leads to pK(a) = -1.7 for the acidity constant of the carbonyl-protonated quinone methide.  相似文献   

2.
3.
o-quinone alpha-phenylmethide was generated as a short-lived transient species in aqueous solution by flash photolysis of o-hydroxy-alpha-phenylbenzyl alcohol, and its rate of decay was measured in HClO4 and NaOH solutions as well as in CH3CO2H, H2PO4-, and HCO3- buffers. These data show that hydration of this quinone methide back to its benzyl alcohol precursor occurs by acid-, base-, and uncatalyzed routes. The acid-catalyzed reaction gives the solvent isotope effect kH+/kD+ = 0.34, whose inverse nature indicates that this reaction occurs via rapid preequilibrium protonation of the quinone methide on its carbonyl oxygen atom followed by rate-determining capture of the ensuing carbocationic intermediate by water, a conclusion supported by the saturation of acid catalysis in concentrated HClO4 solution. o-quinone alpha-(p-anisyl)methide was also generated by flash photolysis of the corresponding benzyl alcohol and of the p-cyanophenol ether of this alcohol as well, and its rate of decay was measured in HClO4 and NaOH solutions and in HCO2H, CH3CO2H, HN3, CF3CH2NH3+, imidazolium ion, H2PO4-, (CH2OH)3CNH3+, (CH3)3CPO3H-, and HCO3- buffers. Acid-, base-, and uncatalyzed hydration reaction routes were again found, and solvent isotope effects as well as saturation of acid catalysis, this time in dilute HClO4, confirmed a preequilibrium mechanism for the acid-catalyzed reaction. Analysis of the buffer data gave buffer-base rate constants that did not conform to the Br?nsted relation, consistent with the expected nucleophilic nature of the buffer reactions.  相似文献   

4.
5.
6.
The dissociation constants of 1,2,3,4-tetrahydro-8-oxyquinoline in aqueous solution, pK 1 = 5.51 ± 0.07 and pK 2 = 9.7 (298 K), were determined by pH-metric titration and computer simulation. The influence of heteroring hydrogenation on the acid-base properties of 8-oxyquinoline is discussed.  相似文献   

7.
The degradation of [5S-[5alpha,6beta,7alpha(R*)]]-2-butyl-5-(1,3-benzodioxol-5-yl)-7-[(2-carboxypropyl)-4-methoxyphenyl]-6-dihydro-5H-cyclopenta[b]pyridine-6-carboxylic acid (J-104,132) was studied in aqueous solution as a function of temperature and pH. The degradation reaction does not proceed to completion; rather, a stable equilibrium is attained in which approximately 2% of the degradate is produced. Kinetic data for the formation of the degradate are analyzed using an integrated form of the rate law for a reversible first-order reaction, and the forward and reverse rate constants and overall equilibrium constants are presented. Isolation and spectroscopic structural determination indicate that the degradate is the C7 beta-epimer of the drug. A mechanism for the epimerization reaction involving a novel enamine-like intermediate is proposed and shown to be consistent with the kinetic data. The rate and equilibrium constants are used to predict the room temperature stability of an injectable formulation of J-104,132, and these predictions are compared to actual data from long-term stability studies. It is concluded that the preformulation kinetic studies provide essential data needed for optimum drug product development.  相似文献   

8.
Rate constants for the self- and cross-termination of the isopropylol radical [(CH3)2?OH] and its anion [(CH3)2?O?] in aqueous solution are determined by kinetic electron spin resonance. Whereas the self-termination of the neutral radical occurs close to the diffusion-controlled limit, the cross- and self-terminations involving the anion are slower and reflect effects of charge repulsion and steric constraints by solvation.  相似文献   

9.
The Arrhenius parameters of the bimolecular rate constants for the decay of several phenoxyl radicals in aqueous solution were measured. The p-halophenoxyl radicals (F, Cl, and Br) decay in a diffusion controlled reaction as the activation energies are the same as that of diffusion of water (16 ± 1.5 kJ · mol?1). The A factors are 1012.2 ± 0.2. For alkyl and alkoxy substituted phenoxyl, slightly higher activation energies were found (19.5 ? 21.9 kJ · mol?1). © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The interaction of the osmolytes trimethylamine N-oxide (TMAO) and urea in aqueous solutions at 40 °C was investigated by isotopic substitution neutron scattering at a TMAO mole fraction of 0.05 and TMAO/urea concentration ratios of 1?:?2 and 1?:?4. The partial pair distribution functions obtained by the empirical potential structure refinement method are consistent with those obtained previously for similar pure TMAO and 1?:?1 TMAO-urea solutions and indicate that urea progressively replaces the water molecules in the first coordination shell of the TMAO oxygen atom. The apparent association constant for the TMAO?:?urea complex (K(1)) was calculated to be 0.14 M(-1), which is of the same order as the experimental urea-protein binding constants per site reported in the literature. This confirms that the two osmolytes act independently at least in the physiological range.  相似文献   

11.
o-Thioquinone methide, 2, was generated in aqueous solution by flash photolysis of benzothiete, 1, and rates of hydration of this quinone methide to o-mercaptobenzyl alcohol, 3, were measured in perchloric acid solutions, using H2O and D2O as the solvent, and also in acetic acid and tris(hydroxymethyl)methylammonium ion buffers, using H2O as the solvent. The rate profiles constructed from these data show hydronium-ion-catalyzed and uncatalyzed hydration reaction regions, just like the rate profiles based on literature data for hydration of the oxygen analogue, o-quinone methide, of the presently examined substrate. Solvent isotope effects on hydronium-ion catalysis of hydration for the two substrates, however, are quite different: k(H)/k(D) = 0.42 for the oxygen quinone methide, whereas k(H)/k(D) = 1.66 for the sulfur substrate. The inverse nature (k(H)/k(D) < 1) of the isotope effect in the oxygen system indicates that this reaction occurs by a preequilibrium proton-transfer reaction mechanism, with protonation of the substrate on its oxygen atom being fast and reversible and capture of the benzyl-type carbocationic intermediate so formed being rate-determining. The normal direction (k(H)/k(D) > 1) of the isotope effect in the sulfur system, on the other hand, suggests that protonation of the substrate on its sulfur atom is in this case rate-determining, with carbocation capture a fast following step. A semiquantitative argument supporting this hypothesis is presented.  相似文献   

12.
Pezza L  Molina M  Melios CB  de Moraes M  Tognolli JO 《Talanta》1996,43(10):1697-1704
Simple equations were derived relating stoichiometric protonation constants of several monocarboxylates and formation constants associated with 1:1 complexes involving some bivalent cations and selected monocarboxylates, in aqueous sodium perchlorate media, at 25 degrees C, as a function of ionic strength (I), allowing the interconversion of parameters from one ionic strength to another, up to I=3.00 M. In addition, thermodynamic formation constants as well as activity coefficients of the species involved in the equilibria were estimated. The results show that the proposed calculation procedure is very consistent with critically selected experimental data.  相似文献   

13.
The stability of curcumin (H3Cur) in aqueous media is improved when the systems in which it is present are at high pH values (higher than 11.7), fitting a model describable by a pseudo-zero order with a rate constant k' for the disappearance of the Cur3- species of 1.39 (10(-9)) Mmin(-1). There were three acidity constants measured for the curcumin as follows: pKA3 = 10.51 +/- 0.01 corresponding to the equilibrium HCur2- = Cur3- + H+, a pKA2 = 9.88 +/- 0.02 corresponding to the equilibrium H2Cur- = HCur-(2) + H+. These pKA values were attributed to the hydrogen of the phenol part of the curcumin, while the pKA1 = 8.38 +/- 0.04 corresponds to the equilibrium H3Cur = H2Cur- + H+ and is attributed the acetylacetone type group. Formation of quinoid structures play an important role in the tautomeric forms of the curcumin in aqueous media, which makes the experimental values differ from the theoretically calculated ones, depending on the conditions adopted in the study.  相似文献   

14.
We applied the free-energy perturbation method together with the averaged solvent electrostatic potential from molecular dynamics (ASEP/MD) method to study the anomeric equilibrium of d-xylose in aqueous solution. The level of calculation, 6-311G++(2d,2p) basis set and density functional theory, permits one to explain the main characteristics of the anomeric equilibrium of d-xylopyranose: in vacuo, the anomeric effect predominates and the form is the stabler. In water, solvation leads to the form being the stabler. A comparison between the performances of the ASEP/MD and polarizable continuum models is also presented.Contribution to the Jacopo Tomasi Honorary Issue  相似文献   

15.
A study was carried out on the rate constant ratio (k RH/k EtH) in reactions of alkanes C3H8, n-C4H10, n-C5H12, n-C6H14, i-C4H10, c-C5H10, and c-C6H12 with OH radicals in water at 5-55°C and the relative activation parameters A RH/A EtH and E EtHE RH. The values of E EtHE RH in water and the gas phase have opposite signs. The values of k RH/k EtH decrease with increasing temperature in the gas phase but increase in water. The behavior of these reactions in water may be attributed to a solvent cage effect.  相似文献   

16.
A new approach for the calculation of various parameters in metal-complex equilibria involving pH-titration curves is described. The calculations do not require a knowledge of the concentrations of either the mineral acid added to the system or of the titrant (alkali). Only the concentrations of the metal ions and the ligand are employed in obtaining the necessary relations. This simplifies the approach of Irving and Rossotti, and also the procedure described earlier by the present authors. It is further shown that for the complexation systems of monoprotonated ligands, the determination of protonation constant is not a prerequisite for obtaining the stepwise metal-ligand formation constants.  相似文献   

17.
18.
We have examined the kinetics and mechanisms of the dediazoniation of p‐nitrobenzenediazonium tetrafluoroborate in acidic aqueous solutions by employing differential pulse polarography (DPP) and differential pulse voltammetry (DPV) on a glassy carbon electrode combined with the use of a coupling reaction to quench unreacted p‐nitrobenzenediazonium ion. These electrochemical techniques show an effective sensitivity and selectivity for detecting arenediazonium ions and arenedediazoniation products under the appropriate experimental conditions (pH, solvent, electrolyte), which allows simultaneous monitoring of the rates of arenediazonium ion loss and product formation and determination of product yields. © 2000 John Wiley & Sons, Inc. Int J Chem Kinet 32: 419–430, 2000  相似文献   

19.
The kinetics of the oxidation of functionalized organic compounds of atmospheric relevance by the hydroxyl radical (OH) was measured in the aqueous phase. Competition kinetics, using the thiocyanate anion (SCN?) as competitor, was applied using both a laser flash photolysis long path absorption (LP‐LPA) setup and a Teflon AF waveguide photolysis (WP) system. Both experiments were intercompared and validated by measuring the rate coefficients for the reaction between OH and acetone where values of k1 = (1.8 ± 0.4) × 108 M?1 s?1 were obtained with the WP system, which agrees very well with the rate constant of k1 = (2.1 ± 0.6) × 108 M?1 s?1 determined before by LP‐LPLA [1]. The following temperature dependencies of the rate constants (M?1 s?1) for the reactions of OH with ketones, dicarboxylic acids, and unsaturated compounds were obtained in Arrhenius' form: Reaction of OH with: methylisobutyl ketone (MIBK): k2 = (1.0 ± 0.1) × 1012

  相似文献   


20.
Rate constants have been measured by pulse radiolysis for the reactions of the NO3 radical with five cyclic ethers and a series of alcohols. Rate constants ranged from 3.5 × 104 M×1 s×1 for deuterated methanol to 1.1 × 107 M?1 s?1 for tetrahydrofuran. The rate constants for the reactions of NO3 with the alcohols 1-propanol to 1-heptanol were found to be linearly dependent on the number of CH3 groups with a group reactivity of 6.4 × 105 M?1 s?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号