首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adsorption of a series of amphiphilic diblock copolymers of poly(ethylene oxide) (PEO) and poly(DL-lactide) (PL) at hydrophobized silica from aqueous solution was studied using time-resolved ellipsometry and reflectometry. The adsorbed amounts only display a weak dependence on the copolymer composition in both water and phosphate-buffered solution. For the short copolymers, the layer thickness decreases slightly with increasing length of the hydrophobic block. Furthermore, in comparison with the short copolymers, the layer thickness of the long copolymers is substantially higher. Upon degradation of the PL block, the adsorbed amount is found to decrease and approach that of the corresponding PEO homopolymer. Protein rejection studies indicate that the adsorption of fibrinogen is inhibited by copolymer preadsorption. The protein rejection is enhanced with increasing surface coverage of the preadsorbed copolymer, but largely independent of the length of the PL block and the PEO block. For all polymers investigated, essentially complete protein rejection is obtained above a critical surface coverage that is significantly lower than the saturation coverage of the copolymers. Removing the copolymer from bulk solution after preadsorption causes a partial desorption, resulting in reduced protein rejection. However, the protein rejection capacity with and without copolymer in the bulk solution is found to be similar at a given surface coverage. Contrary to the behavior of the intact copolymers, fibrinogen adsorption is found to be significant at surfaces pretreated with an extensively degraded copolymer and, in fact, quantitatively comparable to that at the hydrophobic surface in the absence of preadsorption. This finding, together with that of the effect of the copolymer composition on protein rejection, suggests that an efficient protein rejection is maintained until only a few L units remain in the copolymer, i.e., until nearly completed degradation. Copyright 2000 Academic Press.  相似文献   

2.
The adsorption of amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) and poly(ethylene oxide)-b-poly(gamma-methyl-epsilon-caprolactone) copolymers in aqueous solution on silica and glass surfaces has been investigated by flow microcalorimetry, small-angle neutron scattering (SANS), surface forces, and complementary techniques. The studied copolymers consist of a poly(ethylene oxide) (PEO) block of M(n) = 5000 and a hydrophobic polyester block of poly(epsilon-caprolactone) (PCL) or poly(gamma-methyl-epsilon-caprolactone) (PMCL) of M(n) in the 950-2200 range. Compared to homoPEO, the adsorption of the copolymers is significantly increased by the connection of PEO to an aliphatic polyester block. According to calorimetric experiments, the copolymers interact with the surface mainly through the hydrophilic block. At low surface coverage, the PEO block interacts with the surface such that both PEO and PCL chains are exposed to the aqueous solution. At high surface coverage, a dense copolymer layer is observed with the PEO blocks oriented toward the solution. The structure of the copolymer layer has been analyzed by neutron scattering using the contrast matching technique and by tapping mode atomic force microscopy. The experimental observations agree with the coadsorption of micelles and free copolymer chains at the interface.  相似文献   

3.
Core‐shell structured nanoparticles of poly(ethylene glycol) (PEG)/polypeptide/poly(D ,L ‐lactide) (PLA) copolymers were prepared and their properties were investigated. The copolymers had a poly(L ‐serine) or poly(L ‐phenylalanine) block as a linker between a hydrophilic PEG and a hydrophobic PLA unit. They formed core‐shell structured nanoparticles, where the polypeptide block resided at the interface between a hydrophilic PEG shell and a hydrophobic PLA core. In the synthesis, poly(ethylene glycol)‐b‐poly(L ‐serine) (PEG‐PSER) was prepared by ring opening polymerization of N‐carboxyanhydride of O‐(tert‐butyl)‐L ‐serine and subsequent removal of tert‐butyl groups. Poly(ethylene glycol)‐b‐poly(L ‐phenylalanine) (PEG‐PPA) was obtained by ring opening polymerization of N‐carboxyanhydride of L ‐phenylalanine. Methoxy‐poly(ethylene glycol)‐amine with a MW of 5000 was used as an initiator for both polymerizations. The polymerization of D ,L ‐lactide by initiation with PEG‐PSER and PEG‐PPA produced a comb‐like copolymer, poly(ethylene glycol)‐b‐[poly(L ‐serine)‐g‐poly(D ,L ‐lactide)] (PEG‐PSER‐PLA) and a linear copolymer, poly(ethylene glycol)‐b‐poly(L ‐phenylalanine)‐b‐poly(D ,L ‐lactide) (PEG‐PPA‐PLA), respectively. The nanoparticles obtained from PEG‐PPA‐PLA showed a negative zeta potential value of ?16.6 mV, while those of PEG‐PSER‐PLA exhibited a positive value of about 19.3 mV. In pH 7.0 phosphate buffer solution at 36 °C, the nanoparticles of PEG/polypeptide/PLA copolymers showed much better stability than those of a linear PEG‐PLA copolymer having a comparable molecular weight. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Ultrafine fibers of a laboratory‐synthesized new biodegradable poly(p‐dioxanone‐co‐L ‐lactide)‐block‐poly(ethylene glycol) copolymer were electrospun from solution and collected as a nonwoven mat. The structure and morphology of the electrospun membrane were investigated by scanning electron microscopy, differential scanning calorimetry (DSC), wide‐angle X‐ray diffraction (WAXD), and a mercury porosimeter. Solutions of the copolymer, ranging in the lactide fraction from 60 to 80 mol % in copolymer composition, were readily electrospun at room temperature from solutions up to 20 wt % in methylene chloride. We demonstrate the ability to control the fiber diameter of the copolymer as a function of solution concentration with dimethylformamide as a cosolvent. DSC and WAXD results showed the relatively poor crystallinity of the electrospun copolymer fiber. Electrospun copolymer membrane was applied for the hydrolytic degradation in phosphate buffer solution (pH = 7.5) at 37 °C. Preliminary results of the hydrolytic degradation demonstrated the degradation rate of the electrospun membrane was slower than that of the corresponding copolymers of cast film. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1955–1964, 2003  相似文献   

5.
Diblock copolymers consisting of methoxy poly(ethylene glycol) (MPEG) and poly(?‐caprolactone) (PCL), poly(δ‐valerolactone) (PVL), poly(L ‐lactic acid) (PLLA), or poly(lactic‐co‐glycolic acid) (PLGA) as biodegradable polyesters were prepared to examine the phase transition of diblock copolymer solutions. MPEG–PCL and MPEG–PVL diblock copolymers and MPEG–PLLA and MPEG–PLGA diblock copolymers were synthesized by the ring‐opening polymerization of ?‐caprolactone or δ‐valerolactone in the presence of HCl · Et2O as a monomer activator at room temperature and by the ring‐opening polymerization of L ‐lactide or a mixture of L ‐lactide and glycolide in the presence of stannous octoate at 130 °C, respectively. The synthesized diblock copolymers were characterized with 1H NMR, IR, and gel permeation chromatography. The phase transitions for diblock copolymer aqueous solutions of various concentrations were explored according to the temperature variation. The diblock copolymer solutions exhibited the phase transition from gel to sol with increasing temperature. As the polyester block length of the diblock copolymers increased, the gel‐to‐sol transition moved to a lower concentration region. The gel‐to‐sol transition showed a dependence on the length of the polyester block segment. According to X‐ray diffraction and differential scanning calorimetry thermal studies, the gel‐to‐sol transition of the diblock copolymer solutions depended on their degrees of crystallinity because water could easily diffuse into amorphous polymers in comparison with polymers with a crystalline structure. The crystallinity markedly depended on both the distinct character and composition of the block segment. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5784–5793, 2004  相似文献   

6.
A series of amphiphilic block copolymers composed of poly(ethylene oxide) and poly(lactide) were synthesized and their solution properties studied using static and dynamic light scattering. These materials self‐assemble in aqueous media with the hydrodynamic radius increasing with increasing hydrophobic fraction in the copolymer. To ascertain the potential for use of these materials as degradable coatings in delivery applications, block copolymers of varying compositions were adsorbed onto a series of colloidal polystyrene particles with varying radii, and the thickness of the adsorbed layer was determined from changes in the hydrodynamic size. The adlayer thicknesses ranged from 3 to 14 nm with varying block copolymer compositions, and colloid radii. The trends fit well with theoretical models for adlayer thickness, with the exception of the smallest colloids. In these systems, we propose that the colloids may become encapsulated into the block copolymer assembly. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 244–252, 2008  相似文献   

7.
Random and block copolymers of styrene and 2-vinylpyridine, covering the full range of composition, have been synthesized. The adsorption of these polymers from trichloroethylene solution on to precipitated silica has been studied and their ability to impart colloidal stability to the silica dispersions also investigated. Estimates of the layer thickness of adsorbed copolymers have been made. Polystyrene is not adsorbed from trichloroethylene and does not stabilize dispersions of precipitated silica. A random copolymer having 1% 2-vinylpyridine units is adsorbed but shows very little steric stabilization. Random copolymers of 2-vinylpyridine content greater than 10% and AB block copolymers of more than 6% 2-vinylpyridine behave very similarly in respect both of the quantity adsorbed and in their ability to stabilize silica suspensions. Layer thickness does not seem to depend on copolymer composition. Random copolymers with low to intermediate 2-vinylpyridine contents are better steric stabilizers in trichloroethylene than are the corresponding copolymers of methyl methacrylate with styrene: this is attributed in part to the longer sequences of adsorbable units in the vinylpyridine copolymers.  相似文献   

8.
Linear and four‐armed poly(l ‐lactide)‐block‐poly(d ‐lactide) (PLLA‐b‐PDLA) block copolymers are synthesized by ring‐opening polymerization of d ‐lactide on the end hydroxyl of linear and four‐armed PLLA prepolymers. DSC results indicate that the melting temperature and melting enthalpies of poly (lactide) stereocomplex in the copolymers are obviously lower than corresponding linear and four‐armed PLLA/PDLA blends. Compared with the four‐armed PLLA‐b‐PDLA copolymer, the similar linear PLLA‐b‐PDLA shows higher melting temperature (212.3 °C) and larger melting enthalpy (70.6 J g?1). After these copolymers blend with additional neat PLAs, DSC, and WAXD results show that the stereocomplex formation between free PLA molecular chain and enantiomeric PLA block is the major stereocomplex formation. In the linear copolymer/linear PLA blends, the stereocomplex crystallites (sc) as well as homochiral crystallites (hc) form in the copolymer/PLA cast films. However, in the four‐armed copolymer/linear PLA blends, both sc and hc develop in the four‐armed PLLA‐b‐PDLA/PDLA specimen, which means that the stereocomplexation mainly forms between free PDLA molecule and the inside PLLA block, and the outside PDLA block could form some microcrystallites. Although the melting enthalpies of stereocomplexes in the blends are smaller than that of neat copolymers, only two‐thirds of the molecular chains participate in the stereocomplex formation, and the crystallization efficiency strengthens. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 1560–1567  相似文献   

9.
New biodegradable/biocompatible ABC block copolymers, poly(ethylene oxide)‐b‐poly(glycidol)‐b‐poly(L ,L ‐lactide) (PEO‐PGly‐PLLA), were synthesized. First, PEO‐b‐poly(1‐ethoxyethylglycidol)‐b‐PLLA was synthesized by a successive anionic ring‐opening copolymerization of ethylene oxide, 1‐ethoxyethylglycidyl ether, and L ,L ‐lactide initiated with potassium 2‐methoxyethanolate. In the second step, the 1‐ethoxyethyl blocking groups of 1‐ethoxyethylglycidyl ether were removed at weakly acidic conditions leaving other blocks intact. The resulting copolymers were composed of hydrophilic and hydrophobic segments joined by short polyglycidol blocks with one hydroxyl group in each monomeric unit. These hydroxyl groups may be used for further copolymer transformations. The PEO‐PGly‐PLLA copolymers with a molecular weight of PLLA blocks below 5000 were water‐soluble. Above the critical micellar concentration (ranging from 0.05 to1.0 g/L, depending on the composition of copolymer), copolymers formed macromolecular micelles with a hydrophobic PLLA core and hydrophilic PEO shell. The diameters of the micelles were about 25 nm. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 3750–3760, 2003  相似文献   

10.
The colloidal stability with respect to temperature of aqueous α-Fe2O3dispersions stabilized with novel poly(vinylmethylether)-block-poly(vinyloxy-4-butyric acid) diblock copolymers was studied by rheological and turbidimetric measurements. Adsorption of the block copolymers provides the particles with a steric barrier due to the nonadsorbing poly(vinylmethylether) (PVME) blocks. Rheological measurements on concentrated (15 vol %) dispersions showed that flocculation occurred near the θ temperature of PVME in water. For the turbidimetric analysis, the fraction of small particles was used at a very low concentration. With these dispersions, flocculation was found at higher temperatures, corresponding to the lower critical solution temperature of the block copolymer used. The particles spontaneously redispersed when a heated and flocculated dispersion was cooled to below the flocculation temperature.  相似文献   

11.
The ability of styrene–methyl methacrylate copolymers to stabilize silica dispersions has been investigated. Random, block, and graft copolymers covering the entire composition range have been employed in carbon tetrachloride, trichloroethylene, and benzene solutions. Equilibrium sediment volumes and dispersion turbidities provide adequate and concordant estimates of stabilization efficiency. Polystyrene is not adsorbed by precipitated silica from trichloroethylene or benzene and does not stabilize dispersions in these liquids; although adsorbed from carbon tetrachloride, there is no stabilization. Poly(methyl methacrylate) is an efficient dispersion stabilizer, and its performance is independent of molecular weight over a wide range. Random copolymers having styrene contents in excess of ca. 60% do not stabilize in trichloroethylene but do so in carbon tetrachloride, although well adsorbed in both cases. With this major exception, and that of a low-styrene graft copolymer in carbon tetrachloride, copolymers of all structures and compositions stabilize well, better than poly(methyl methacrylate) in the solvents examined. A substantial degree of surface coverage is necessary for optimum stabilization. Subsidiary solution adsorption and layer thickness measurements are also reported.  相似文献   

12.
Molecular motions of hydrophobic–hydrophilic water-soluble block copolymers in solution were investigated by high-resolution proton magnetic resonance (NMR). Samples studied include block copolymers of polystyrene–poly(ethylene oxide), polybutadiene–poly(ethylene oxide), and poly(ethylene oxide)–poly(propylene oxide)–poly(ethylene oxide). NMR measurements were carried out varying molecular weight, temperature, and solvent composition. For AB copolymers of polystyrene and poly(ethylene oxide), two peaks caused by the phenyl protons of low-molecular-weight (M?n = 3,300) copolymer were clearly resolved in D2O at 100°C, but the phenyl proton peaks of high-molecular-weight (M?n = 13,500 and 36,000) copolymers were too broad to observe in the same solvent, even at 100°C. It is concluded that polystyrene blocks are more mobile in low-molecular-weight copolymer in water than in high-molecular-weight copolymer in the same solvent because the molecular weight of the polystyrene block of the low-molecular-weight copolymer is itself small. In the mixed solvent D2O and deuterated tetrahydrofuran (THF-d8), two peaks caused by the phenyl protons of the high-molecular-weight (M?n = 36,000) copolymer were clearly resolved at 67°C. It is thought that the molecular motions of the polystyrene blocks are activated by the interaction between these blocks and THF in the mixed solvent.  相似文献   

13.
Novel poly(ester carbonate)s were synthesized by the ring‐opening polymerization of L ‐lactide and functionalized carbonate monomer 9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one derived from pentaerythritol with diethyl zinc as an initiator. 1H NMR analysis revealed that the carbonate content in the copolymer was almost equal to that in the feed. DSC results indicated that Tg of the copolymer increased with increasing carbonate content in the copolymer. Moreover, the protecting benzylidene groups in the copolymer poly(L ‐lactide‐co‐9‐phenyl‐2,4,8,10‐tetraoxaspiro[5,5]undecan‐3‐one) were removed by hydrogenation with palladium hydroxide on activated charcoal as a catalyst to give a functional copolymer, poly(L ‐lactide‐co‐2,2‐dihydroxylmethyl‐propylene carbonate), containing pendant primary hydroxyl groups. Complete deprotection was confirmed by 1H NMR and FTIR spectroscopy. The in vitro degradation rate of the deprotected copolymers was faster than that of the protected copolymers in the presence of proteinase K. The cell morphology and viability on a copolymer film evaluated with ECV‐304 cells showed that poly(ester carbonate)s derived from pentaerythritol are good biocompatible materials suitable for biomedical applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45:1737 –1745, 2007  相似文献   

14.
Block copolymers were synthesized by ring‐opening polymerization of L ‐lactide or D ‐lactide in the presence of mono‐ or dihydroxyl poly(ethylene glycol), using zinc metal as catalyst. The resulting copolymers were characterized by various techniques, namely 1H NMR spectroscopy, differential scanning calorimetry (DSC), X‐ray diffractometry, and Raman spectrometry. The composition of the copolymers was designed such that they were water soluble. Bioresorbable hydrogels were prepared from aqueous solutions containing both poly(L ‐lactide)/poly(ethylene glycol) and poly(D ‐lactide)/poly(ethylene glycol) block copolymers. Rheological studies confirmed the formation of hydrogels resulting from stereocomplexation between poly(L ‐lactide) and poly(D ‐lactide) blocks.

Ring‐opening polymerization of L (D )‐lactide in the presence of dihydroxyl PEG using zinc powder as catalyst.  相似文献   


15.
Biodegradable and amphiphilic diblock copolymers [polylactide-block-poly(ethylene glycol)] and triblock copolymers [polylactide-block-poly(ethylene glycol)-block-polylactide] were synthesized by the anionic ring-opening polymerization of lactides in the presence of poly(ethylene glycol) methyl ether or poly(ethylene glycol) and potassium hexamethyldisilazide as a catalyst. The polymerization in toluene at room temperature was very fast, yielding copolymers of controlled molecular weights and tailored molecular architectures. The chemical structure of the copolymers was investigated with 1H and 13C NMR. The formation of block copolymers was confirmed by 13C NMR and differential scanning calorimetry investigations. The monomodal profile of the molecular weight distribution by gel permeation chromatography provided further evidence of block copolymer formation as well as the absence of cyclic species. Additional confirmation of the block copolymers was obtained by the substitution of 2-butanol for poly(ethylene glycol); butyl groups were clearly identified by 1H NMR as polymer chain end groups. The effects of the copolymer composition and lactide stereochemistry on the copolymer properties were examined. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2235–2245, 2007  相似文献   

16.
We have newly synthesized amphiphilic block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic pyridine segments (PEG-b-Py). Chain transfer agent-terminated PEG was subsequently chain-extended with 3-(4-pyridyl)-propyl acrylate to obtain PEG-b-Py by reversible additional-fragmentation chain transfer polymerization. Particularly, the effect of varying molecular weight (Mn) of PEG (Mn?=?2,000 and 5,000) and Py in the block copolymers was investigated in terms of critical micelle concentration, pyrene solubilization, micelle size distribution, and association number per micelle. Based on the amphiphilic balance, PEG-b-Pys formed core-shell type polymer micelle. The association number of PEG2k-b-Py was higher than that of PEG5k-b-Py, suggesting the degree of phase separation strongly depended on PEG Mn. Furthermore, the adsorption of PEG-b-Py copolymer onto silica nanoparticles as dispersant was studied to estimate the effect of PEG Mn in the copolymers and their solubility in the medium on the adsorption. Adsorbed density of PEG2k-b-Py copolymer onto silica nanoparticle was higher than that of PEG5k-b-Py, which was significantly correlated with the degree of phase separation. Furthermore, the adsorbed amount of copolymer increased with the increase in ionic strength due to the reduced solubility of PEG in the buffer solution. The resultant dispersion stability was highly correlated with the graft density of copolymer onto silica surface. However, the stability of PEG2k-b-Py coated particles was lower than that with PEG5k-b-Py, this is attributed to the relatively thin layer of PEG at the silica surface, which cannot provide the system with sufficient steric stabilization as the salt concentration increases. These fundamental investigations for the surface modification of the nanoparticle provide the insight into the highly stable colloidal dispersion, particularly in the physiological condition with high ionic strength.  相似文献   

17.
In addition to phase morphology, diffusion, and dynamics in the bulk, the behavior of block copolymers in the confined state has been of great interest. Although random and graft copolymers have been used in polymer-layered silicate nanocomposites, well-defined block copolymers have received relatively little attention. In this study, the kinetics of intercalation of a series of poly(styrene-b-isoprene) block copolymers into a layered silicate were examined via X-ray diffraction. Intercalation was observed even when the copolymer was in the ordered state, with no discontinuity around the order–disorder transition of the copolymer. As the size of the polystyrene block was increased, slower intercalation kinetics were observed, possibly because of the increased glass-transition temperature of the polystyrene segment. Finally, the clearing temperature of the copolymer in the nanocomposites as measured by small-angle X-ray scattering showed a large heating-rate dependence suggesting that the nanoparticles act as kinetics barriers to the disordering of the copolymer. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 3264–3271, 2003  相似文献   

18.
Ethylene glycol (EG) initiated, hydroxyl‐telechelic poly(L ‐lactide) (PLLA) was employed as a macroinitiator in the presence of a stannous octoate catalyst in the ring‐opening polymerization of 5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one (MBC) with the goal of creating A–B–A‐type block copolymers having polycarbonate outer blocks and a polyester center block. Because of transesterification reactions involving the PLLA block, multiblock copolymers of the A–(B–A)n–B–A type were actually obtained, where A is poly(5‐methyl‐5‐benzyloxycarbonyl‐1,3‐dioxan‐2‐one), B is PLLA, and n is greater than 0. 1H and 13C NMR spectroscopy of the product copolymers yielded evidence of the multiblock structure and provided the lactide sequence length. For a PLLA macroinitiator with a number‐average molecular weight of 2500 g/mol, the product block copolymer had an n value of 0.8 and an average lactide sequence length (consecutive C6H8O4 units uninterrupted by either an EG or MBC unit) of 6.1. For a PLLA macroinitiator with a number‐average molecular weight of 14,400 g/mol, n was 18, and the average lactide sequence length was 5.0. Additional evidence of the block copolymer architecture was revealed through the retention of PLLA crystallinity as measured by differential scanning calorimetry and wide‐angle X‐ray diffraction. Multiblock copolymers with PLLA crystallinity could be achieved only with isolated PLLA macroinitiators; sequential addition of MBC to high‐conversion L ‐lactide polymerizations resulted in excessive randomization, presumably because of residual L ‐lactide monomer. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6817–6835, 2006  相似文献   

19.
The interaction of amphiphilic block copolymers comprising an anionic block (polyacrylate or polymethacrylate) and a hydrophobic block (polystyrene, poly(butyl acrylate) or polyisobutylene) with lightly crosslinked poly(N,N-diallyl-N,N-dimethylammonium chloride) is studied for the first time. It is shown that the cationic hydrogel can sorb anionic amphiphilic block copolymers via electrostatic interaction with the corona of block copolymer micelles. The rate of sorption of block copolymer polyelectrolytes is significantly lower than the rate of sorption of linear polyions and is controlled by the lengths of the hydrophilic and hydrophobic blocks and the flexibility of the latter blocks. The sorption of amphiphilic block copolymers is accompanied by their self-assembly in the polycomplex gel and formation of a continuous hydrophobic layer impermeable to water and the low-molecular-mass salt dissolved in it.  相似文献   

20.
A simple, one‐step procedure has been developed for the preparation of bifunctional initiators capable of polymerizing monomers suitable for atom‐transfer radical polymerization (ATRP) and ring‐opening polymerization (ROP). These bifunctional initiators were employed for making narrow disperse poly(styrene) macroinitiators, which were subsequently used for the ROP of various lactides to yield poly(styrene‐block‐lactide) copolymers. Thermogravimetric analysis (TGA) of these block copolymers are interesting in that it shows a two‐step degradation curve with the first step corresponding to the degradation of poly(lactide) segment and the second step associated with the poly(styrene) segment of the block copolymer. This nature of the block copolymer makes it possible to estimate the block copolymer content by TGA in addition to the 1H NMR spectroscopic analysis. Thus, this study for the first time highlights the possibility of making porous materials by thermal means which are otherwise obtained by base hydrolysis. The bifunctional initiators were prepared by the esterification of 3‐hydroxy, 4‐hydroxy, and 3,5‐dihydroxy benzyl alcohols with α‐bromoisobutyryl bromide and 2‐bromobutyryl bromide. A mixture of products was obtained, which were purified by column chromatography. The esterified benzyl alcohols were employed in the polymerization of styrene under copper (Cu)‐catalyzed ATRP conditions to yield macroinitiators with low polydispersity. These macroinitiators were subsequently used in the ROP of L ‐, DL ‐, and mixture of lactides. The formation of block copolymers was confirmed by gel permeation chromatography (GPC), spectroscopic and thermal characterizations. The molecular weight of the block copolymers was always higher than the macroinitiator, and the GPC chromatogram was symmetrical indicating the uniform initiation of ROP by the macroinitiators. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 102–116, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号