首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
水果坚实度的近红外光谱检测分析试验研究   总被引:30,自引:10,他引:20  
应用傅里叶漫反射近红外光谱技术探讨了水果坚实度无损检测的方法。利用偏最小二乘法建立了坚实度与漫反射光谱的无损检测数学模型,同时对不同光谱预处理方法和不同建模波段范围对模型的预测性能进行了对比分析。结果表明:利用傅里叶变换光谱仪采集的原始光谱的平滑预处理对结果并没有太大影响;原始光谱在800~2 500 nm范围的模型得到了最好的预测结果:校正集样本的相关系数r为0.869,校正均方根误差RMSEC为3.88 N;预测集样本的相关系数r为0.840,预测均方根误差RMSEP为4.26 N。 通过本研究得出:应用近红外漫反射光谱检测水果坚实度是可行的,为今后快速无损评价水果成熟度提供了理论依据。  相似文献   

2.
基于漫反射高光谱成像技术的哈密瓜糖度无损检测研究   总被引:4,自引:0,他引:4  
利用高光谱成像系统获得网纹类哈密瓜糖度漫反射光谱信息,选择有效波段500~820 nm进行哈密瓜糖度检测建模回归分析。对比了多元散射信号修正和标准正则变换校正方法,原始光谱、一阶微分、二阶微分光谱预处理方法对建模精度的影响;采用偏最小二乘法、逐步多元线性回归和主成分回归方法对比分析了带皮哈密瓜和去皮哈密瓜糖度检测模型效果。结果表明,对原始光谱经过MSC和一阶微分光谱处理后,采用PLS和SMLR方法均可取得很好的建模效果,应用PLS法检测带皮哈密瓜糖度是可行的,其校正集相关系数(Rc)为0.861,RMSEC为0.627,预测集相关系数(Rp)为0.706,RMSEP为0.873;应用SMLR法检测去皮哈密瓜糖度效果最佳,校正集相关系数(Rc)为0.928,RMSEC为0.458,预测集相关系数(Rp)为0.818,RMSEP为0.727。研究表明,应用高光谱成像技术检测哈密瓜糖度具有可行性。  相似文献   

3.
应用多种近红外建模方法分析梨的坚实度   总被引:5,自引:2,他引:3  
近红外光谱(near infrared spectroscopy,NIRS)技术是一种快速、无损的仪器分析方法,在农产品品质检测方面引起了广泛的关注,在近红外光谱信息和品质指标之间建立一个稳健的模型是近红外光谱分析中十分重要且有一定难度的过程,常见的多元校正方法有偏最小二乘回归(PLSR)、主成分回归(PCR)和逐步多元线性回归(SMLR)等,该研究中除了常用的线性方法外,还采用了一种结合非线性方法的组合算法[结合了SMLR和径向基神经网络(RBFN)]用于梨坚实度的近红外光谱检测。比较常用的线性建模方法,原始光谱的PLSR模型的得到了较好的结果:校正集相关系数r=0.87, 校正均方根误差RMSEC=3.88 N,预测集r=0.84, 预测均方根误差RMSEP=4.26 N;组合算法的建模结果比SMLR和PCR的结果好,但比PLSR的结果稍差:校正集r=0.85, RMSEC=4.15 N,预测集r=0.82, RMSEP=4.67 N。结果表明:NIRS可用于梨的坚实度检测,但是建模方法的选择值得进一步研究以提高预测的精度。  相似文献   

4.
近红外光谱法直接检测甜叶菊叶片甜菊糖苷模型建立   总被引:1,自引:0,他引:1  
使用近红外光谱技术直接扫描甜叶菊干叶片,建立了甜菊苷(stevioside,ST)和莱鲍迪苷A(rebaudioside A,RA)的检测模型。对甜菊苷含量在0.27%~1.40%,莱鲍迪苷A含量在0.61%~3.98%范围内的不同品种的甜叶菊干叶片进行了近红外光谱扫描,共扫描了105份。采用偏最小二乘法建立甜菊糖苷的检测模型,比较了减去一条直线、多元散射校正、一阶导数和二阶导数等不同的光谱预处理方法对模型的影响。结果显示减去一条直线的数据预处理方法为ST的最优建模方法。ST校正集相关系数为0.986,校正均方根误差为0.341,预测均方根误差为1.00,相对分析误差为2.8;RA采用无光谱预处理建模,RA的建模结果相关系数为0.967,校正均方根误差为1.50,预测均方根误差为1.98,相对分析误差为4.17。说明近红外光谱技术检测甜叶菊干叶片中ST和RA的含量具有一定的可行性。同时与甜叶菊粉末ST模型结果相关系数为0.986,校正均方根误差为0.32,预测均方根误差为0.601,相对分析误差为2.86和RA模型结果相关系数为0.968,校正均方根误差为1.50,预测均方根误差为1.48,相对分析误差为4.2相比差异不明显。但减少了叶片粉末检测过程中的烘干、研磨的步骤,节省了时间,降低了工作量。  相似文献   

5.
利用太赫兹时域光谱(THz-TDS)和傅里叶变换远红外光谱(FT-Far-IR)技术研究了大米中西维因在太赫兹频段的吸收光谱特征,并结合化学计量学方法对大米中西维因进行了测定。样品的制备采取待测农药西维因与大米粉末混合压片的方法模拟真实检测情景,无需样品的分离富集。分别将样品在1.8~6.3 THz特征波段内的Far-IR吸收光谱数据和在0.5~1.5 THz特征波段内的THz-TDS吸收光谱数据随机划分为训练集和验证集。采用偏最小二乘回归(PLSR)方法建立定量分析模型,将校正均方根误差(RMSECV)、预测均方根误差(RMSEP)、预测相关系数(Rv)作为模型性能评判的依据,RMSECV,RMSEP越小,Rv越大,则所建立的模型越好。两种检测技术均得到较好的结果。其中,运用Far-IR技术所得数据建立的定量分析模型预测相关系数(Rv)为0.99,校正均方根误差(RMSECV)为0.007 7, 预测均方根误差(RMSEP)为0.008 6; 运用THz-TDS技术所得数据建立的定量分析模型预测相关系数为0.98,校正均方根误差(RMSECV)为0.002 5、预测均方根误差(RMSEP)为0.004 4。该研究为定量检测粮食中的农残提供了一种新方法。  相似文献   

6.
基于遗传算法的安溪铁观音品质快速评价研究   总被引:2,自引:0,他引:2  
为探究一种快速无损的安溪铁观音品质评价方法,利用遗传算法(GA)对茶样的近红外光谱特征波长进行筛选,结合偏最小二乘(PLS),建立全谱段的PLS定量模型与GA-PLS模型。结果表明,傅里叶变换近红外(FT-NIR)全谱段光谱在经过平滑+二阶导数+归一化处理后,PLS模型预测性能最高,建模结果为:校正集相关系数RC=0.921,校正集均方根误差RMSEC=0.543,验证集相关系数RP=0.913,验证集均方根误差RMSEP=0.665。选用近红外光谱6 670~4 000 cm-1谱区,采用遗传算法进行特征波长筛选,参与建模数据点数从1 557缩减到408个。优选波段后,GA-PLS建模结果为:校正集相关系数RC=0.959,校正集均方根误差RMSEC=0.413,验证集相关系数RP=0.940,验证集均方根误差RMSEP=0.587。可见,GA-PLS模型的校正集和验证集的预测结果均优于全谱段PLS模型。结果说明,在传统的近红外光谱技术结合化学计量学方法的建模基础上,加入遗传算法进行波长筛选,能有效提高模型预测能力,实现方法学的创新研究,且GA-PLS品质评价模型具有较强的参考和推广价值,为提高我国茶叶品质的检测技术水平提供新的方法借鉴。  相似文献   

7.
氨基酸与儿茶素是茶叶品质的重要组成成分。祁门红茶在加工过程中,氨基酸与儿茶素含量发生了显著的变化,而且不同加工阶段差异性很大,但目前在生产中缺乏快速在线检测方法。为了实现对祁门红茶加工过程中氨基酸和儿茶素含量快速测定,试验以鲜叶、萎凋叶、揉捻叶、发酵叶和干燥后毛茶为原料,获取近红外光谱并利用化学方法检测氨基酸和儿茶素含量。对采集的原始光谱进行标准正态变量变换(SNVT)预处理,利用联合区间偏最小二乘回归法(Si-PLS)构建氨基酸和儿茶素含量近红外回归模型,相关系数与交互验证均方根误差作为评价模型的有效指标。结果表明,利用Si-PLS方法建立氨基酸含量的模型最优组合包含20个光谱区间并联合4个子区间和9个主成分因子,校正集的相关系数、校正均方根误差分别为0.955 8和1.768;预测集的相关系数、预测均方根误差分别为0.949 5和2.16。儿茶素含量的模型最优组合包含20个光谱区间并联合3个子区间和10个主成分因子,校正集的相关系数、校正均方根误差分别为0.940 1和1.22;预测集的相关系数、预测均方根误差分别为0.938 5和1.17。所建立模型准确性较好,这为茶叶加工过程中茶叶品质的在线监控提供了理论依据。  相似文献   

8.
波段筛选方法的选取以及随后的光谱特征波段的提取对高光谱模型效果的影响较大。为了快速准确检测羊肉的pH值,开展并讨论了利用两种特征波段筛选方法对羊肉pH值高光谱模型的影响研究。本研究采用二阶导数(2D)、多元散射校正(MSC)和中心化处理(mean-centering)相结合的方法对所提取纯肌肉部分的代表性光谱进行预处理,利用联合区间偏最小二乘(siPLS)和联合区间偏最小二乘结合遗传算法(siPLS-GA)对全波段473~1000 nm范围光谱进行特征波段的提取,并分别建立相对应特征波段范围羊肉pH的PLS预测模型,同时与全波段的PLS模型效果相比较。结果表明采用siPLS-GA提取的特征波长建立的PLS模型效果最优,其选取的特征波长点数为56,校正集相关系数(Rcal)和均方根误差(RMSEC)分别为0.96和0.043,预测集相关系数(RP)和均方根误差(RMSEP)分别为0.96和0.048。siPLS-GA方法既能够减少建模使用的光谱变量,又可以提高模型精度,因此利用高光谱图像技术结合siPLS-GA可以实现羊肉pH的特征波段筛选和快速准确检测。  相似文献   

9.
为了寻求一种快速、无损检测脱绒棉种活力的方法,提出基于高光谱技术预测脱绒棉种电导率。采集了新陆早50、新陆早57、新陆早62三个品种且不同老化程度下共810粒脱绒棉种高光谱图像(400~1 000 nm),通过组合不同预处理方法,采用chauvenet检测方法剔除异常值后建立了偏最小二乘法(PLS)、逐步多元线性回归(SMLR)、主成分回归(PCR)模型。结果表明,采用变量标准化(SNV)、卷积平滑(Savitzky-Golay)、一阶微分(First derivative)和norris微分平滑组合的预处理方法,波段范围为480~530,650~980 nm下建立的PLS模型效果最佳;其中PLS模型得到新陆早50、新陆早57、新陆早62的预测集相关系数和校正集相关系数分别为0.88,0.90,0.92,0.91,0.89,0.90;预测集均方根误差(RMSEP)和校正集均方根误差(RMSEC)分别为44.3,38.4,37.8,46.5,43.5和40.8 μS·cm-1。研究结果表明,采用高光谱技术预测脱绒棉种电导率具有一定的可行性,也为其他种子的活力检测奠定了良好的基础。  相似文献   

10.
猪肉pH值的可见近红外光谱在线检测研究   总被引:6,自引:0,他引:6  
pH值是猪肉关键品质之一,实施在线检测对优化肉品加工工艺、保证产品质量、提高肉及肉制品的经济价值有重要意义。研究应用可见近红外光谱对新鲜猪肉pH值进行在线检测,实验时样品以0.25 m·s-1的速度运动,采集其可见近红外漫反射光谱(350~1 000 nm),进行反射距离校正后应用偏最小二乘回归法建立猪肉pH值在线检测模型。研究通过Kennard-stone算法划分样品校正集与预测集,对比了不同的光谱预处理方法(多元散射校正,微分等)对预测结果的影响,并对建模所用光谱变量进行优化。研究发现经过多元散射校正结合一阶微分预处理的模型效果最好,模型预测相关系数为0.905,预测均方根误差为0.051,经过优化的模型建模所用波长变量数减少一半,模型的预测相关系数提高到0.926,预测均方根误差下降至0.045。结果表明可见近红外光谱可用于新鲜猪肉pH值的在线检测。  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号