首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Electric transport and scanning tunneling spectrum(STS)have been investigated on polycrystalline samples of the new superconductor Bi4O4S3.A weak insulating behavior in the resistive curve has been induced in the normal state when the superconductivity is suppressed by applying a magnetic field.Interestingly,a kink appears on the temperature dependence of resistivity near 4 K at all high magnetic fields above 1 T when the bulk superconductivity is completely suppressed.This kink associated with the upper critical field as well as the wide range of excess conductance at low fields and high temperatures is explained as the possible evidence of strong superconducting fluctuation.From the tunneling spectra,a superconducting gap of about 3 meV is frequently observed yielding a ratio of 2Δ/kB TC~16.6.This value is much larger than the one predicted by the BCS theory in the weak coupling regime(2Δ/kB TC~3.53),which suggests the strong coupling superconductivity in the present system.Furthermore,the gapped feature persists on the spectra until 14 K in the STS measurement,which suggests a prominent fluctuation region of superconductivity.Such a superconducting fluctuation can survive at very high magnetic fields,which are far beyond the critical fields for bulk superconductivity as inferred both from electric transport and tunneling measurements.  相似文献   

2.
Anisotropy of high-energy spin excitations and low-energy conductive electronic excitations in Raman spectra can be interpreted, if quantum spin fluctuation is weak. The low-energy states at (π/2, π/2) in the underdoped phase are composed of insulating states induced by the insulator-metal transition and the conductive states induced by electron-phonon coupling. The superconducting states are created in the latter states and the pairing symmetry is s or d(xy). On the other hand, the electronic states at (π, 0) in the overdoped phase are electron-spin coupled states and the pairing symmetry is d(x2y2).  相似文献   

3.
The superconducting specific heat jump for the s-f; hybridization model of UBe13 of Overhauser and Appel [2] is calculated. The narrow peak in the density-of-states is found to enhance the size of the jump relative to the BCS value of 1.43, but in weak coupling the increase is insufficient to agree with the measured value for UBe13. The Kondo lattice model of Razafimandimby, Fulde and Keller [9] is considered as a possible modification, but in weak coupling a simple estimate shows that this cannot increase the specific heat jump significantly. It is speculated, however, that a consistent picture may still be possible with conventional strong coupling corrections.  相似文献   

4.
I present results from an approach that extends the Eliashberg theory by systematic expansion in the vertex function; an essential extension at large phonon frequencies, even for weak coupling. In order to deal with computationally expensive double sums over momenta, a dynamical cluster approximation (DCA) approach is used to incorporate momentum dependence into the Eliashberg equations. First, I consider the effects of introducing partial momentum dependence on the standard Eliashberg theory using a quasi-local approximation; which I use to demonstrate that it is essential to include corrections beyond the standard theory when investigating d-wave states. Using the extended theory with vertex corrections, I compute electron and phonon spectral functions. A kink in the electronic dispersion is found in the normal state along the major symmetry directions, similar to that found in photo-emission from cuprates. The phonon spectral function shows that for weak coupling Wλ<ω0, the dispersion for phonons has weak momentum dependence, with consequences for the theory of optical phonon mediated d-wave superconductivity, which is shown to be 2nd order in λ. In particular, examination of the order parameter vs. filling shows that vertex corrections lead to d-wave superconductivity mediated via simple optical phonons. I map out the order parameters in detail, showing that there is significant induced anisotropy in the superconducting pairing in quasi-2D systems.  相似文献   

5.
We study the interplay between magnetic correlations of two Kondo impurities and superconducting singlet pairing. Performing a Schrieffer-Wolff transformation in the zero-bandwidth limit of the two-impurity Anderson model we obtain the Hamiltonian of two magnetic impurities and we add a superconducting term to the conduction electrons. The model allows us to study the effect of the magnetic correlation between the impurities on the superconducting ground state. At zero temperature, different superconducting ground states can be obtained depending on the magnitude of magnetic coupling between S1 and S2. For increasing coupling, the superconducting region is enlarged showing an interesting result: in the strong coupling limit, where the impurities are in a very strong ferromagnetic correlation state, half of the conduction electrons are decoupled from the local moments of the impurities and take advantage of the superconducting pairing lowering the ground state energy. On the contrary, when the coupling between S1and S2 decreases, the scenario of the two independent Kondo impurities in presence of superconductivity emerges and all the conduction electrons are involved in the pair breaking physics. At finite temperature, we obtain the phase diagram and we observe a region of parameters where the re-entrance phenomenon occurs.  相似文献   

6.
7.
We present in this work an exact renormalization group (RG) treatment of a one-dimensional p-wave superconductor. The model proposed by Kitaev consists of a chain of spinless fermions with a p-wave gap. It is a paradigmatic model of great actual interest since it presents a weak pairing superconducting phase that has Majorana fermions at the ends of the chain. Those are predicted to be useful for quantum computation. The RG allows to obtain the phase diagram of the model and to study the quantum phase transition from the weak to the strong pairing phase. It yields the attractors of these phases and the critical exponents of the weak to strong pairing transition. We show that the weak pairing phase of the model is governed by a chaotic attractor being non-trivial from both its topological and RG properties. In the strong pairing phase the RG flow is towards a conventional strong coupling fixed point. Finally, we propose an alternative way for obtaining p-wave superconductivity in a one-dimensional system without spin–orbit interaction.  相似文献   

8.
Shen's experimental data on α2(ω)F(ω) and μ1 in superconducting Nb3Sn is used to calculate its thermodynamic properties. It is found to exhibit the same size strong coupling corrections to BSC as does Pb. Comparison with experimental data shows satisfactory agreement.  相似文献   

9.
10.
《Nuclear Physics B》2001,592(3):512-562
A continuous sequence of infinitesimal unitary transformations is used to diagonalize the quantum sine-Gordon model for β2∈(2π,∞). This approach can be understood as an extension of perturbative scaling theory since it links weak- to strong-coupling behavior in a systematic expansion: a small expansion parameter is identified and this parameter remains small throughout the entire flow unlike the diverging running coupling constant of perturbative scaling. Our approximation consists in neglecting higher orders in this small parameter. We find very accurate results for the single-particle/hole spectrum in the strong-coupling phase and can describe the full crossover from weak to strong-coupling. The integrable structure of the sine-Gordon model is not used in our approach. Our new method should be of interest for the investigation of nonintegrable perturbations and for other strong-coupling problems.  相似文献   

11.
We review the normal and superconducting state properties of the unconventional triplet superconductor Sr2RuO4 with an emphasis on the analysis of the magnetic susceptibility and the role played by strong electronic correlations. In particular, we show that the magnetic activity arises from the itinerant electrons in the Ru d‐orbitals and a strong magnetic anisotropy occurs (χ+‐ < χzz) due to spin‐orbit coupling. The latter results mainly from different values of the g‐factor for the transverse and longitudinal components of the spin susceptibility (i.e. the matrix elements differ). Most importantly, this anisotropy and the presence of incommensurate antiferromagnetic and ferromagnetic fluctuations have strong consequences for the symmetry of the superconducting order parameter. In particular, reviewing spin fluctuation‐induced Cooper‐pairing scenario in application to Sr2RuO4 we show how p‐wave Cooper‐pairing with line nodes between neighboring RuO2‐planes may occur. We also discuss the open issues in Sr2RuO4 like the influence of magnetic and non‐magnetic impurities on the superconducting and normal state of Sr2RuO4. It is clear that the physics of triplet superconductivity in Sr2RuO4 is still far from being understood completely and remains to be analyzed more in more detail. It is of interest to apply the theory also to superconductivity in heavy‐fermion systems exhibiting spin fluctuations.  相似文献   

12.
It has been shown that two-and three-center interactions arise in the strong-coupling regime for the 2D Kondo lattice; these interactions both induce and suppress the Cooper instability. It is important that, in contrast to the t-J* model, the three-center interactions promote the Cooper pairing and ensure the appearance of the superconducting phase with a high critical temperature T c. The calculated concentration dependences of T c agree well with the experimental data for the cuprate superconductors.  相似文献   

13.
The thermodynamic stability of odd-frequency pairing states is investigated within an Eliashberg-type framework. We find the rigorous result that in the weak coupling limit a continuous transition from the normal state to a spatially homogeneous odd-in-ω superconducting state is forbidden, irrespective of details of the pairing interaction and of the spin symmetry of the gap function. For isotropic systems, it is shown that the inclusion of strong coupling corrections does not invalidate this result. We discuss a few scenarios that might escape these thermodynamic constraints and permit stable odd-frequency pairing states.  相似文献   

14.
From the standard interaction between electrons and two level systems a superconductive pairing is envisaged. The solutions of the Eliashberg equations for the critical temperature as well as the zero temperature gap lead to expressions as exp (?1/√λ0) instead of exp (?1/λ0) in the BCS case, which enhances considerably the superconducting properties in the weak coupling case.  相似文献   

15.
The equation for the critical temperature Tc, of a dilute superconducting alloy due to Markowitz and Kadanoff (MK) is generalized to include renormalization effects due to the electron-phonon interaction. Such corrections constitute a 50% effect in weak coupling superconductors like aluminum while in strong coupling systems like lead this correction gives a factor of 2.5. The mean square anisotropy parameter appearing in the Tc equation is also generalized to remove the separability assumption of the electron-phonon interaction. Some consequences of these two corrections to the analysis and systematization of data for dilute superconducting alloys is discussed.  相似文献   

16.
We investigate the pairing symmetry of layered BiS2 compomlds by assuming that electron-electron correlation is still important so that the pairing is rather short range. We lind that the extended .s-wave pairing symmetry always wins over d-wave when the pairing is confined between two short range sites up to next nearest neighbors. The pairing strength is peaked around the doping level :r = 0.5. which is consistent with experimental observation. The extended s-wave pairing symmetry is very robust against spin orbital coupling because it is mainly determined by the structure of Fermi surfaces, Moreover. the extended s-wave pafiring can be distinguished from conventional swave pairing by measuring and comparing superconducting gaps of different Fermi surfaces.  相似文献   

17.
We study the disorder effects upon superconducting transition temperature T c and the number of local pairs within the attractive Hubbard model in the combined Nozieres-Schmitt-Rink and DMFT + Σ approximations. We analyze the wide range of attractive interaction U, from the weak coupling region, where instability of the normal phase and superconductivity are well described by the BCS model, to the limit of strong coupling, where superconducting transition is determined by Bose-Einstein condensation of compact Cooper pairs, forming at temperatures much higher than superconducting transition temperature. It is shown that disorder can either suppress T c in the weak coupling limit, or significantly enhance T c in the case of strong coupling. However, in all cases we actually prove the validity of generalized Anderson theorem, so that all changes in T c are related to change in the effective bandwidth due to disorder. Similarly, disorder effects on the number of local pairs are only due to these band-broadening effects.  相似文献   

18.
We investigate superconductivity that may exist in the doped BaCoSO, a multi-orbital Mott insulator with a strong antiferromagnetic ground state. The superconductivity is studied in both t-J type and Hubbard type multi-orbital models by mean field approach and random phase approximation (RPA) analysis. Even if there is no C4 rotational symmetry, it is found that the system still carries a d-wave like pairing symmetry state with gapless nodes and sign changed superconducting order parameters on Fermi surfaces. The results are largely doping insensitive. In this superconducting state, the three \({t_{{2_g}}}\) orbitals have very different superconducting form factors in momentum space. In particular, the intra-orbital pairing of the \({d_{{x^2} - {y^2}}}\) orbital has an s-wave like pairing form factor. The two methods also predict very different pairing strength on different parts of Fermi surfaces. These results suggest that BaCoSO and related materials can be a new ground to test and establish fundamental principles for unconventional high temperature superconductivity.  相似文献   

19.
We have investigated the magnetic and transport properties of borocarbide superconductors YNi2B2C and YPd5B3C0.4 with Yttrium partially substituted by Samarium. The upper critical fields HC2 are determined by the scaling analysis of the thermal fluctuation magnetoconductivity. Around the transition region, the thermal fluctuation magnetoconductivity can be scaled by a universal function for all applied magnetic fields. The formula HC2(T)=HC2(0)[1−(T/TC)3/2]3/2 of a narrow-band pairing mechanism gives an excellent fit to the value of upper critical field HC2(0)=7.6 T in the Y0.8Sm0.2Pd5B3C0.4 compound. The superconducting coherence length ξ is determined to be 6.58 nm, the Ginzburg-Landau parameter κ is 29 and the penetration depth λ is 191 nm.  相似文献   

20.
General kinetic equations are derived for nuclear reactions in dense plasmas by taking into account first-order collective plasma effects. We show that, apart from the corrections proportional to the product of the charges Z i and Z j of two reacting nuclei i and j, new corrections comparable in magnitude and proportional to the squares of the nuclear charges Z i 2 and Z j 2 arise. The Salpeter corrections [1] to the nuclear reaction probabilities due to the plasma screening of the interaction potential are shown to be at least a factor of r/d (r is the nuclear size and d is the Debye screening length) smaller than those assumed previously. These are zero in the approximation where the terms of order r/d are disregarded. The correlation corrections proportional to Z iZj have a different physical meaning than those in [1], can have a different sign, and arise for reactions with zero Salpeter corrections. For the correlation corrections that substitute for the previously used Salpeter corrections, strong correlations are difficult to describe analytically. The interpolation formulas between weak and strong Salpeter screenings previously used in many astrophysical applications are inapplicable, because the interpolation formulas between weak and strong correlations cannot yet be obtained. We found a new type of corrections that are proportional to the squares of the charges of reacting nuclei. These are attributable to a change in the collective electrostatic self-energy of the plasma system during nuclear reactions. Plasma corrections for the hydrogen-cycle nuclear reactions are numerically calculated for the temperature, density, and abundances in the solar interior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号