首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epigallocatechin gallate, a flavonoid from Camellia sinensis possess various pharmacological activities such as anticancer, antimicrobial and antioxidant etc. Adenosine deaminase, (ADA), is a key enzyme involved in the purine metabolism, the inhibitors of which is being considered as highly promising candidate for the development of anti-proliferative and anti-inflammatory drugs. In this work we studied adenosine deaminase inhibitory activity of epigallocatechin gallate by using biophysical and computational methods. The enzyme inhibition study result indicated that epigallocatechin gallate possess strong inhibitory activity on ADA. ITC study revealed the energetics of binding. Also the binding is confirmed by using fluorescence spectroscopy. The structural details of binding are obtained from molecular docking and MD simulation studies.  相似文献   

2.
Adenosine deaminase (ADA) is currently used as a diagnostic marker for tuberculous pleuritis. Although ADA has been suggested as a potential marker for several types of cancer, the importance of each of ADA isoforms as well as their levels and enzymatic activities in tumors need to be further investigated. Herein we developed avian immunoglobulin Y highly specific to human ADA via hens immunization with calf adenosine deaminase. The obtained antibodies were used for the development of a sensitive double-egg yolk immunoglobulin (IgY) sandwich ELISA assay with an ADA detection limit of 0.5 ng/ml and a linearity range of up to 10 ng/ml. Specific, affinity-purified IgYs were able to recognize human recombinant ADA and ADA present in human cancer cell lines. In addition, antigen-specific IgY antibodies were able to inhibit catalytic activity of calf ADA with an IC50 value of 47.48 nM. We showed that generated IgY antibodies may be useful for ADA detection, thus acting as a diagnostic agent in immunoenzymatic assays.  相似文献   

3.
Cordycepin has recently received increased attention owing to its extensive pharmacological activity. Adenosine deaminase (ADA) is widely distributed in mammalian blood and tissues; as a result, cordycepin is quickly metabolized upon entering into the body and converted into the inactive metabolite 3′-deoxyinosine, thus limiting its activity when administered alone. We herein present a novel ultra-high-performance liquid chromatography–tandem mass spectrometry (UHPLC–MS/MS) method for screening ADA inhibitors against the metabolism of cordycepin. Cordycepin and 3′-deoxyinosine were chosen as substrate and product, respectively. A proper separation was achieved for all analytes within 3 min. 3′-Deoxyinosine was quantified in the presence or absence of potential ADA inhibitors to evaluate ADA activity. The assay can simultaneously determine substrate and product, with the endogenous substance and ADA inhibitors added not interfering in its activity. After optimizing the enzymatic incubation and UHPLC–MS/MS conditions, Km and Vmax values for ADA deamination of cordycepin were 95.18 ± 7.85 μm and 363.90 ± 12.16 μmol/min/unit, respectively. Oleanolic acid and ursolic acid from Ligustri Lucidi Fructus were chosen as ADA inhibitors with half maximal inhibitory concentration values of 21.82 ± 0.39 and 18.41 ± 0.14 μm , respectively. A non-competitive inhibition model was constructed and this assay can be used to screen other potential ADA inhibitors quickly and accurately.  相似文献   

4.
Transition state theory suggests that enzymatic rate acceleration (kcat/knon) is related to the stabilization of the transition state for a given reaction. Chemically stable analogues of a transition state complex are predicted to convert catalytic energy into binding energy. Because transition state stabilization is a function of catalytic efficiency, differences in substrate specificity can be exploited in the design of tight-binding transition state analogue inhibitors. Coformycin and 2'-deoxycoformycin are natural product transition state analogue inhibitors of adenosine deaminases (ADAs). These compounds mimic the tetrahedral geometry of the ADA transition state and bind with picomolar dissociation constants to enzymes from bovine, human, and protozoan sources. The purine salvage pathway in malaria parasites is unique in that Plasmodium falciparum ADA (PfADA) catalyzes the deamination of both adenosine and 5'-methylthioadenosine. In contrast, neither human adenosine deaminase (HsADA) nor the bovine enzyme (BtADA) can deaminate 5'-methylthioadenosine. 5'-Methylthiocoformycin and 5'-methylthio-2'-deoxycoformycin were synthesized to be specific transition state mimics of the P. falciparum enzyme. These analogues inhibited PfADA with dissociation constants of 430 and 790 pM, respectively. Remarkably, they gave no detectable inhibition of the human and bovine enzymes. Adenosine deamination is involved in the essential pathway of purine salvage in P. falciparum, and prior studies have shown that inhibition of purine salvage results in parasite death. Inhibitors of HsADA are known to be toxic to humans, and the availability of parasite-specific ADA inhibitors may prevent this side-effect. The potent and P. falciparum-specific inhibitors described here have potential for development as antimalarials without inhibition of host ADA.  相似文献   

5.
We disclose herein the rapid discovery of the first highly potent (Ki = 7.7 nM) non-nucleoside adenosine deaminase (ADA) inhibitor based on the rational hybridization of two structurally distinct leads. Two micromolar inhibitors were discovered by a parallel rational design and random screening program, and individual crystal structures of bovine ADA in complexation with these inhibitors revealed several unknown binding sites and distinct binding modes. Using this information as the starting point, highly effective lead hybridization was achieved in only two structure-based drug design iterations. The conceptual approach illustrated by this example promises to be broadly useful in the search for new chemical entities and can contribute greatly to improve the overall efficiency and speed of drug discovery.  相似文献   

6.
The synthesis of 2- and 6-trifluoromethylated purines and 1-deazapurines was performed by formal [3 + 3]-cyclization reactions of 5-aminoimidazoles with a set of trifluoromethyl-substituted 1,3-CCC- and 1,3-CNC-dielectrophiles. The corresponding fluorinated nucleosides were synthesized by glycosylation of 9-unsubstituted purines and 1-deazapurines with peracetylated β-ribose, β-glucose, and rhamnose and subsequent deprotection. These scaffolds can be considered as potential inhibitors of adenosine deaminase (ADA) and inosine monophosphate dehydrogenase (IMPDH) enzymes.  相似文献   

7.
Xiaowen Ji 《Talanta》2010,82(4):1170-231
A novel strategy for the preparation of in-column adenosine deaminase (ADA) microreactor and rapid screening of enzyme inhibitors in natural extracts was demonstrated. In this approach, ADA was encapsulated in anionic polyelectrolyte alginate that was immobilized on the surface of fused-silica capillary via ionic binding technique with cationic polyelectrolyte polyethylenimine (PEI). On-line enzyme inhibition study was performed by capillary electrophoresis (CE). The substrate and product were baselined separated within 75 s. The enzyme activity was determined by the quantification of peak area of the product. Enzyme inhibition can be read out directly from the reduced peak area of the product in comparison with a reference electropherogram obtained in the absence of any inhibitor. The inhibition percentage was used to evaluate relative activity of ADA microreactor. A known ADA inhibitor, erythro-9-(2-hydroxy-3-nonyl) adenine (EHNA) was employed as a model compound for the validation of the inhibitor screening method, and the screening of ADA inhibitor in 19 traditional Chinese herbal medicines was performed.  相似文献   

8.
A number of new pyrazolo[3,4-c] and [4,3-b]pyridine C-nucleosides, which can be viewed as 4- or 6-deazaformycin analogues were synthesized and examined as potential adenosine deaminase (ADA) inhibitors. The compounds were prepared through the condensation of a suitably substituted, lithiated 2- or 4-methylpyridine with tri-O-benzyl-d-ribonolactone, followed by borohydride reduction of the resulting hemiacetals, intramolecular Mitsunobu cyclisation of the derived diols, formation of the pyrazolopyridine ring system and subsequent removal of the protecting groups. These derivatives were designed on the structural basis provided by docking simulations performed within the enzyme catalytic site, however they demonstrated weak ADA inhibitory activity. Theoretical calculations assisted in the interpretation of the obtained biological data, thus providing guidance for rational structural modifications within this molecular scaffold.  相似文献   

9.
Thermodynamic studies were carried out to evaluate the binding of theophylline on adenosine deaminase (ADA) in 50 mM sodium phosphate buffer pH 7.5, at 300 K, using isothermal titration calorimetry (ITC). A simple method for determination of binding isotherm in the drug--ADA interaction was applied using ITC data. ADA has two binding sites for theophylline, which show positive cooperativity in its sites. The intrinsic association equilibrium constants are 6 and 52 mM(-1) in the first and second binding sites, respectively. Hence, occupation of the first site has produced an appreciable enhancement by 8.7 of the binding affinity of the second site. The molar enthalpies of binding are -12.2 and -14.9 kJ/mol in the first and second binding sites, respectively.  相似文献   

10.
Conformationally restricted carbocyclic nucleosides with either a northern(N)-type conformation, i.e., N-type 2′-deoxy-methanocarba-adenosine 8 ((N)MCdAdo), or a southern(S)-type conformation, i.e. S-type 2′-deoxy-methanocarba-adenosine 9 , ((S)MCdAdo), were used as substrates for adenosine deaminase (ADA) to assess the enzyme's preference for a fixed conformation relative to the flexible conformation represented by the carbocyclic nucleoside aristeromycin ( 10 ). Further comparison between the rates of deamination of these compounds with those of the two natural substrates adenosine (Ado; 1 ) and 2′-deoxyadenosine (dAdo; 2 ), as well as with that of the conformationally locked nucleoside LNA-Ado ( 11 ), which, like the natural substrates, has a furanose O(4′) atom, helped differentiate between the roles of the O(4′) anomeric effect and sugar conformation in controlling the rates of deamination by ADA. Differences in rates of deamination as large as 10000 can be attributed to the combined effect of the O(4′) atom and the enzyme's preference for an N-type conformation. The hypothesis proposed is that ADA's preference for N-type substrates is not arbitrary; it is rather the direct consequence of the conformationally dependent O(4′) anomeric effect, which is more efficient in N-type conformers in promoting the formation of a covalent hydrate at the active site of the enzyme. The formation of a covalent hydrate at the active site of ADA precedes deamination. A new and efficient synthesis of the important carbobicyclic template 14a , a useful intermediate for the synthesis of (N)MCdAdo ( 8 ) and other conformationally restricted nucleosides, is also reported.  相似文献   

11.
A simple, efficient, and highly sensitive in-line CE method was developed for the characterization and for inhibition studies of the nucleoside-metabolizing enzymes purine nucleoside phosphorylase (PNP) and adenosine deaminase (ADA) present in membrane preparations of human 1539 melanoma cells. After filling the running buffer (50 mM borate buffer, 100 mM SDS, pH 9.10) into a fused-silica capillary (50 cm effective length × 75 μm), a large sample volume was loaded by hydrodynamic injection (5 psi, 36 s), followed by the removal of the large plug of sample matrix from the capillary using polarity switching (-20 kV). The current was monitored and the polarity was reversed when 95% of the current had been recovered. The separation of the neutral analytes (nucleosides and nucleobases) was performed by applying a voltage of 15 kV. An about 10-fold improvement of sensitivity for the five investigated analytes (adenosine, inosine, adenine, hypoxanthine, xanthine) was achieved by large-volume stacking with polarity switching when compared with CE without stacking. For inosine and adenine detection limits as low as 60 nM were achieved. To the best of our knowledge, this represents the highest sensitivity for nucleoside and nucleobase analysis using CE with UV detection reported so far. The Michaelis-Menten constants (K(m)) for PNP and ADA and the inhibition constants (K(i)) for standard inhibitors determined with the new method were consistent with literature data.  相似文献   

12.
A new type of biosensor was designed based on Adenosine deaminase (ADA) immobilized on graphene oxide (GO)/carboxymethyl chitosan (CMC)/multi-wall carbon nanotube (MWCNT) platform nanostructure, fabricated and successfully applied (utilized) in Adenosine detection. Square wave voltammetry was used to study the biosensor catalytic activity. Morphological analysis of the nanostructure was performed by AFM and SEM methods. The results provided here proved that utilizing GO/CMC/MWCNT leads to effective immobilization of ADA which was confirmed by the long term stability of the biosensor during examined intervals. The immobilized ADA activity was examined and the kinetic parameters (K m and V max) were found to be 47.5 μM and 5.8 μM min?1, respectively. Furthermore, benznidazole was introduced as a potent ADA inhibitor using virtual screening. Outstanding inhibition characteristics of benznidazole was observed against ADA. ADA inhibition by benznidazole was non-competitive with the inhibition constant of 0.42 μM. Such an interesting template with an easy preparation process with low cost can provide a novel matrix for developing biosensors and biocatalysts based on enzyme immobilization.  相似文献   

13.
The use of in-source collision-induced dissociation (CID) was evaluated to generate structural information on peptide aldehydes, which represent an important class of compounds as inhibitors for serine and cysteine proteases and as key intermediates for protein engineering. By studying five peptide aldehydes of different lengths, and their peptide acetal counterparts, mass to charge (m/z) dependency of in-source fragmentation was established for peptides that differ only by their C-terminal functionalization. In-source fragmentation of peptide aldehydes and acetals leads to the same final ion, probably via a similar mechanism. Moreover, the gas-phase information obtained here reflects the equilibrium occurring in solution between the peptide aldehyde and its hydrated form, which was retained during the ionization process. The equilibrium constant was determined to be close to unity. Disturbance of this equilibrium should enable the stability of covalent hydration of a given series of aldehydes to be compared.  相似文献   

14.
Adenosine deaminase (ADA) is an enzyme involved in purine metabolism. ADA converts adenosine to inosine and liberates ammonia. Because of their critical role in the differentiation and maturation of cells, the regulation of ADA activity is considered as a potential therapeutic approach to prevent malignant and inflammatory disorders. In the present study, the inhibitory activity of a plant flavonoid, hibifolin on ADA is investigated using enzyme kinetic assay and isothermal titration calorimetry. The inhibitory constant of hibifolin was found to be 49.92 μM ± 3.98 and the mode of binding was reversible. Isothermal titration calorimetry showed that the compound binds ADA with binding energy of −7.21 Kcal/mol. The in silico modeling and docking studies showed that the bound ligand is stabilized by hydrogen bonds with active site residues of the enzyme. The study reveals that hibifolin can act as a potential inhibitor of ADA.  相似文献   

15.
Adenosine deaminases (ADAs) from human, bovine, and Plasmodium falciparum sources were analyzed by kinetic isotope effects (KIEs) and shown to have distinct but related transition states. Human adenosine deaminase (HsADA) is present in most mammalian cells and is involved in B- and T-cell development. The ADA from Plasmodium falciparum (PfADA) is essential in this purine auxotroph, and its inhibition is expected to have therapeutic effects for malaria. Therefore, ADA is of continuing interest for inhibitor design. Stable structural mimics of ADA transition states are powerful inhibitors. Here we report the transition-state structures of PfADA, HsADA, and bovine ADA (BtADA) solved using competitive kinetic isotope effects (KIE) and density functional calculations. Adenines labeled at [6-13C], [6-15N], [6-13C, 6-15N], and [1-15N] were synthesized and enzymatically coupled with [1'-14C] ribose to give isotopically labeled adenosines as ADA substrates for KIE analysis. [6-13C], [6-15N], and [1-15N]adenosines reported intrinsic KIE values of (1.010, 1.011, 1.009), (1.005, 1.005, 1.002), and (1.004, 1.001, 0.995) for PfADA, HsADA, and BtADA, respectively. The differences in intrinsic KIEs reflect structural alterations in the transition states. The [1-15N] KIEs and computational modeling results indicate that PfADA, HsADA, and BtADA adopt early SNAr transition states, where N1 protonation is partial and the bond order to the attacking hydroxyl nucleophile is nearly complete. The key structural variation among PfADA, HsADA, and BtADA transition states lies in the degree of N1 protonation with the decreased bond lengths of 1.92, 1.55, and 1.28 A, respectively. Thus, PfADA has the earliest and BtADA has the most developed transition state. This conclusion is consistent with the 20-36-fold increase of kcat in comparing PfADA with HsADA and BtADA.  相似文献   

16.
ADARs are adenosine deaminases that act on RNA and are responsible for RNA-editing reactions that occur in eukaryotic mRNAs, including the mRNAs of glutamate and serotonin receptors. ADARs capable of editing biologically relevant RNA substrates have been identified. In addition, the consequence of the RNA-editing reaction on the function of the gene product is known in several cases. However, our understanding of the chemical mechanism of the ADAR-catalyzed adenosine deamination in RNA is lagging. By studying analogues of a naturally occurring substrate for ADAR2, we infer features of the enzyme's active site and reaction mechanism. 8-Aza substitution at adenosine in various RNA substrates accelerates the rate of deamination at these sites by ADAR2 (2.8-17-fold). The magnitude of this "aza effect" depends on the RNA structural context of the reacting nucleotide. N(6)-Methyladenosine in RNA is a slow substrate for ADAR2 (rate is 2% that of adenosine), with no product observed with N(6)-ethyladenosine, suggesting a limited size of the leaving group pocket. 2,6-Diaminopurine ribonucleoside in RNA is not a substrate for ADAR, in contrast to adenosine deaminase (ADA), which catalyzes a similar reaction on nucleosides. This and other results indicate that ADAR2 uses a base recognition strategy different from that of ADA. Consistent with the large 8-aza effect observed for the ADAR2 reaction, we find that 8-azanebularine, as the free nucleoside, inhibits the ADAR2 reaction (IC(50) = 15 +/- 3 mM) with no inhibition observed with nebularine or coformycin.  相似文献   

17.
The reduction of 1-methyl-, 3-methyl- and 1,3-dimethyl-5-nitrouracil (Ia-c) to the corresponding 5-aminouracils (IIa-c) is described. Diazotization of 5-amino-1-methyluracil (IIa) and 5-amino-1,3-dimethyluracil (IIc) gave 5-diazouracils which were characterized as thermally stable C6 covalent hydrates (III and XIII). Diazotization of 5-amino-3-methyluracil (IIb) gave anhydro 5-diazo-3-methyluracil (X) which underwent covalent methanolation and thermally reversible covalent hydration. Treatment of III and XIII with hot methanol resulted in solvent exchange of the C6 hydroxyl groups by a mechanism which may involve initial formation of diazoethers. Treatment of the methanolates (IV, XI and XIV) with dimethylamine resulted in coupling at the diazo group with a concomitant expulsion of the C6 methoxyl groups to give 5-(3,3-dimethyl-1-triazeno)uracils (XVa-c).  相似文献   

18.
In this work, covalent hydration energies for a variety of azanaphthalenes and purine analogs have been calculated using a variety of quantum chemical methods. On the basis of these results, we recommend the CPCM(UA0)‐B3LYP/6‐31+G(d,p) level for rapid prediction of covalent hydration energies. However, we caution the use of this methodology for computing covalent hydration energies for fluorine‐containing compounds. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2010  相似文献   

19.
20.
Pyrimidines containing 5-substituents which are weakly or strongly electron withdrawing undergo covalent hydration across the 3,4-carbon-nitrogen bond in aqueous acid. The degree of hydration was measured by proton magnetic resonance spectroscopy and was found to be dependent on the strength of the acid media and the electron withdrawing power of the 5-substituent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号