首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
High molecular mobility of maltose-conjugated alpha-cyclodextrins (alpha-CDs) along a poly(ethylene glycol) (PEG) chain due to the mechanically locked structure of polyrotaxanes enhanced multivalent interactions between maltose and concanavalin A (Con A). When maltose groups are conjugated with alpha-CDs that were threaded onto a PEG capped with benzyloxycarbonyl l-tyrosine (polyrotaxane), Con A-induced hemagglutination was greatly inhibited by polyrotaxanes with a certain threading % of alpha-CDs. Such an inhibitory effect was significantly superior to the other type of conjugates, in which poly(acrylic acid) was used as a backbone for maltose conjugation. The spin-spin relaxation time (T2) of the maltose C(1) proton in the polyrotaxane at a typical alpha-CD threading % was significantly larger than that of any other conjugate, which was well related to the inhibitory effect. Therefore, we concluded that the high mobility of maltose groups along the polyrotaxane structure contributes to enhanced Con A recognition.  相似文献   

2.
An enzyme-responsive polysaccharide supramolecular targeted nanoassembly was successfully constructed by the host-guest complexation of positively charged mono-(6-(tetraethylenepentamine)-6-deoxy)-β-cyclodextrin(TEPA-CD) with adamantane-grafted hyaluronic acid(HA-ADA).Possessing a series of positively charged polyamine chains, the obtained polysaccharide nanoassembly could serve as a biocompatible plasmid DNA(p DNA) container. More interestingly, the p DNA could be released from the nanoassembly through the enzymatic degradation of HA skeleton, which realized the controlled p DNA binding and release. Besides, the polysaccharide nanoassembly exhibited lower cytotoxicity than the commercial transfection reagents 25 k Da b PEI(PEI25 k), accompanied by similar gene delivery effect. We believe that this work might present a convenient method for targeted,controlled gene delivery.  相似文献   

3.
Bovine serum albumin(BSA) was modified through a facile synthesis method to increase its isoelectric point(pI) from 4.8 to 6.0.When pH is higher than 6.0,the protein shows a negative surface charge,on the contrary,the protein is positively charged.In this study,the charge-reversal modified BSA(crBSA) was utilized to assemble with the binary complexes of pDNA/poly(vinylpyrrolidone)-graft-poly(2-dimethylaminoethyl methacrylate)(pDNA/PVP-g-PDMAEMA) to shield the excess positive charges of complexes at physiological pH(pH 7.4).When the complex coated with crBSA located in the environment at endosomal pH(pH 5.0),the charge-reversal of crBSA led to the deviation of crBSA from polyplex by electrostatic repulsion,which would benefit the transfection of the target gene.The crBSA shows great potential for improving the transfection efficiency of pDNA/PVP-g-PDMAEMA.  相似文献   

4.
An A-B-C type triblock copolymer, tandemly aligning two types of polycations with different pKa values in a single polymer strand, was developed for the construction of novel polyplex micelles, satisfying a high DNA condensing ability as well as a proton buffering activity directed to elevating gene transfection. The micelle might feature the distinctive three-layered structure, where an inner polyplex layer of condensed pDNA with poly(l-lysine) (pKa approximately 9.4) as the C segment is successively wrapped with an intermediate layer of poly[(3-morpholinopropyl)aspartamide] (B segment) with a comparatively low pKa of approximately 6.2, to provide a buffering effect, and an outer PEG layer (A segment) as a biocompatible palisade.  相似文献   

5.
Lanthanide-doped chitosan nanospheres (LDCNs) and lanthanide-Fe(3)O(4)-doped chitosan nanospheres (Fe(3)O(4)-LDCNs) are fabricated and show fluorescence, MRI effectiveness and desirable biocompatibility. Superior to most nanoparticles that were found retained in cytoplasmic organelles rather than the nucleus, the prepared chitosan nanospheres preferentially enter and illuminate the cell nuclei. Complexation of plasmid DNA (pDNA) to the nanospheres was accomplished via electrostatic forces between positively charged chitosan and negatively charged pDNA. Satisfactory results of the complexation indicate that the prepared chitosan nanospheres can serve as a potential fluorescent nonviral vector for pDNA delivery that can fulfill gene delivery and transfer efficiency assessment simultaneously, without an additional step of tagging fluorophores to the vectors carried out in fabrications of currently available pDNA delivery vectors.  相似文献   

6.
PEG-based polyplex micelles, which can detach the surrounding PEG chains responsive to the intracellular reducing environment, were developed as nonviral gene vectors. A novel block catiomer, PEG-SS-P[Asp(DET)], was designed as follows: (i) insertion of biocleavable disulfide linkage between PEG and polycation segment to trigger PEG detachment and (ii) a cationic segment based on poly(aspartamide) with a flanking N-(2-aminoethyl)-2-aminoethyl group, P[Asp(DET)], in which the Asp(DET) unit acts as a buffering moiety inducing endosomal escape with minimal cytotoxicity. The polyplex micelles from PEG-SS-P[Asp(DET)] and plasmid DNA (pDNA) stably dispersed in an aqueous medium with a narrowly distributed size range of approximately 80 nm due to the formation of hydrophilic PEG palisades while undergoing aggregation by the addition of 10 mM dithiothreitol (DTT) at the stoichiometric charge ratio, indicating the PEG detachment from the micelles through the disulfide cleavage. The PEG-SS-P[Asp(DET)] micelles showed both a 1-3 orders of magnitude higher gene transfection efficiency and a more rapid onset of gene expression than PEG-P[Asp(DET)] micelles without disulfide linkages, due to much more effective endosomal escape based on the PEG detachment in endosome. These findings suggest that the PEG-SS-P[Asp(DET)] micelle may have promising potential as a nonviral gene vector exerting high transfection with regulated timing and minimal cytotoxicity.  相似文献   

7.
Thermoreversible gelation and microphase formation of aqueous solutions of a methylated polyrotaxane (MePR) were investigated by means of differential scanning microcalorimetry, rheometry, and X-ray diffractometry (XRD). The aqueous solutions of MePR show a lower critical solution temperature (LCST) and form an elastic gel with increasing temperature. The sol-gel transition of the MePR solutions was induced by formation and deformation of aggregates of methylated alpha-cyclodextrins (alpha-CDs) of polyrotaxane due to hydrophobic dehydration and hydration, respectively. The XRD investigation revealed localization and highly ordered arrangement of methylated alpha-CDs along the PEG chain in the gel. The arrangement of CDs was also reflected by the changes in elasticity and long relaxation behavior of the solution around the sol-gel transition. The quasiequilibrium shear modulus of MePR solutions showed the critical phenomena against temperature. The scaling exponents measured at two different concentrations were almost equal to the values predicted by a gel percolation theory. Therefore, the heat-induced gelation of aqueous MePR solutions is well explained by a model in which clusters assembled with methylated alpha-CDs are gradually connected to the network as the temperature increases.  相似文献   

8.
A block catiomer polyplex, showing a high stability in the extracellular medium and an efficient release of plasmid DNA (pDNA) in the intracellular compartment, was developed by controlling both the cationic charge and disulfide cross-linking densities of the backbone polycations. Poly(ethylene glycol)-poly(L-lysine) block copolymer (PEG-PLL) was thiolated using either of two thiolation reagents, N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP) or 2-iminothiolane (Traut's reagent), to investigate the effects of both the charge and disulfide cross-linking densities on the properties of the polyplexes. The introduction of thiol groups by SPDP proceeded through the formation of amide linkages to concomitantly decrease the cationic charge density of PLL segment, whereas Traut's reagent promoted the thiolation with the introduction of cationic imino groups to keep the charge density constant. These thiolated PEG-PLLs were complexed with pDNA to form the disulfide cross-linked block catiomer polyplexes, which had the size of approximately 100 nm. Both thiolation methods were similarly effective in introducing disulfide cross-links to prevent the polyplex from the dissociation through a counter polyanion exchange in the extracellular oxidative condition. On the other hand, the efficient release of pDNA responding to the reductive condition mimicking the intracellular environment was only achieved for the polyplex thiolated with SPDP, a system compensating for the decrease in the charge density with the disulfide cross-linking. This distinctive sensitivity toward oxidative and reductive environments was nicely correlated with the remarkable difference in the transfection efficiency between these two types of thiolated polyplexes (SPDP and Traut's reagent types): the former revealed approximately 50 times higher transfection efficiency toward 293T cells than the latter. Obviously, the balance between the densities of the cationic charge and disulfide cross-linking in the thiolated polyplex played a crucial role in the delivery and controlled release of entrapped pDNA into the microenvironment of intracellular compartment to achieve the high transfection efficiency.  相似文献   

9.
A functional polyrotaxane of a PEI-b-PEG-b-PEI copolymer is synthesized in aqueous solution in a one-pot sequence. To obtain a polyrotaxane with PEG-block-selective inclusion complexes, the solution pH of the polypseudorotaxane is lowered to 4.4 in the presence of 9-anthraldehyde (AN), which triggers the expulsion of the alpha-cyclodextrins (alpha-CDs) from the flank PEI chains. Synthetic strategy of a block-selective polyrotaxane between a PEI-b-PEG-b-PEI copolymer and alpha-cyclodextrins.  相似文献   

10.
We describe the quantitative synthesis of new pyrene labeled cyclodextrin-based polyrotaxane starting from pseudopolyrotaxane of alpha,omega-dimethacrylate poly(ethylene oxide) (PEO) and alpha-cyclodextrins (alpha-CDs). Using a solvent mixture (H2O/dimethyl sulfoxide (DMSO)), an almost quantitative conversion in polyrotaxane can be achieved using the coupling reaction between methacrylic functions and 1-pyrene butyric acid N-hydroxysuccinimide ester. This result is due to the fast blocking reaction of the pseudopolyrotaxane telechelic functions. The polyrotaxanes are characterized by NMR, size exclusion chromatography (SEC), and small-angle neutron scattering (SANS). A rodlike structure of the polyrotaxane is evidenced by SANS, and a persistence length of 70 A is determined. This result corresponds to an almost completely stretched PEO chain of 1000 g.mol(-1) molecular weight. We furthermore studied the opposite case of low packing density polyrotaxanes that were also silylated to suppress interactions between cyclodextrins. We observed a random coil structure only for silylated low packed polyrotaxane. This result demonstrates that both hydrogen bonding and packing density can explain the rodlike structure of cyclodextrin-based polyrotaxane.  相似文献   

11.
A pH-responsive PEGylated nanogel was successfully prepared by means of emulsion copolymerization of 2-(N,N-diethylamino)ethyl methacrylate (AMA) with heterobifunctional poly(ethylene glycol) (PEG) bearing a 4-vinylbenzyl group at the α-end and a lactose moiety at the ω-end in the presence of potassium persulfate and ethyleneglycol dimethacrylate as a cross-linker. Polyplex micelle composed of PEG-block-poly(l-lysine) copolymer and plasmid DNA (PEG-b-PLL/pDNA) exhibited a far more efficient transfection ability in the presence of lac-nanogel-8k-1.0% (PEG, M n = 8000; cross-linking density, 1.0%) than the PEG-b-PLL/pDNA polyplex micelle alone (in the absence of lac-nanogel-8k-1.0%), suggesting that an appreciable fraction of lac-nanogel-8k-1.0% along with the PEG-b-PLL/pDNA polyplex micelle is taken up into the HuH-7 cells through the asialoglycoprotein receptor-mediated endocytosis process mediated by the cluster of a large number of lactose moieties on the surface of lac-nanogel-8k-1.0%, followed by the effective disruption of the endosome by the buffer effect of the unprotonated PAMA core in lac-nanogel-8k-1.0%. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
基于环糊精的(准)聚轮烷研究进展   总被引:3,自引:0,他引:3  
环糊精聚轮烷作为超分子化学的重要成员由于可潜在应用于分子机器、组织工程支架、人体生物传感器及药物控制释放载体等智能生物材料已成为国际化学及高分子科学的一个热点.本文介绍了基于环糊精的(准)聚轮烷最新研究进展,包括(准)聚轮烷合成新方法,聚轮烷的多种类型(如嵌段型、金属软连接型、星形、pH敏感型、侧链型、聚轮烷聚集体等),以及(准)聚轮烷形成机理研究,并进一步探讨了该领域的研究前景及有待解决的问题.  相似文献   

13.
This work studied the possibility of using polyethyleimine (PEI) as an affinity ligand for the purification of plasmid DNA (pDNA) from alkaline lysates using aqueous two-phase systems (ATPSs). The goal was to find conditions under which this cationic polymer could steer the partition of pDNA to the phase where less impurities accumulate. In poly(ethylene glycol) (PEG)/ammonium sulphate systems, neither free nor PEGylated PEI (pPEI) were able to change the partition of pDNA. This is probably due to the high salt concentration present in these systems that impair the interaction between pDNA and PEI. In PEG 3350/dextran 110 systems, the desired effect could be observed but 0.2-0.5M ammonium sulphate had to be added to prevent the co-partition of RNA to the same phase. These results were used to develop a methodology to obtain polyplexes from alkaline lysates in a two-step ATPSs extraction process. In the first step, a PEG 600/ammonium sulphate system is used to remove most impurities to the top phase. The pDNA-containing bottom phase is then isolated and contacted with a second PEG 3350/dextran 110 system supplemented with a small amount of pPEI (0.2%). Plasmid yield was 100% and the final preparation had no RNA and only small amounts of contaminant protein. Additionally, pDNA was obtained in the form of 53nm-sized polyplexes which are likely to suit specific gene delivery applications.  相似文献   

14.
High transfection efficiency and superior cell imaging are required for cationic polymers‐based gene delivery system to afford high therapeutic effect but its high toxicity and unstable cell imaging are easily ignored. In this study, cationic amino poly(glycerol methacrylate) derivative (PGMA‐EDA) is used to incorporate bovine serum albumin (BSA) and aggregation‐induced emission (AIE) molecular (tetraphenylethylene derivatives, TPE) as an efficient carrier for gene transfection and intracellular imaging. The obtained polymer/pDNA‐TPE/BSA (PDTB) quaternary nanoparticles (NPs) not only exhibit efficient gene transfection but also show excellent biocompatibility. After inclusion of TPE/BSA (TB) NPs, BSA promoted dissociation of the complexes upon being protonated and the lipophilic TPE‐reduced endosomal membrane stability, which enhanced endosomal escape of pDNA payload, finally resulting in an excellent gene transfection. On the other hand, less positive surface charge of PDTB NPs than that of the binary PD complexes, as well as the addition of biocompatible BSA, both factors contribute to the improved cell viability. Moreover, the AIE feature of TPE compared to aggregation‐caused quenching character of conventional fluorophores enables the complex with stably tracking the delivery of pDNA into cancer cells. Therefore, the newly developed PDTB complexes may be a promising candidate vector for traceable, safe, and effective gene delivery.  相似文献   

15.
A beta-CD-based biodegradable polyrotaxane was prepared by capping both terminals of polypseudorotaxane consisting of hydrazide-terminated PEG-block-PPG-block-PEG (Pluronic P-105) and beta-CD-succinates with mono-aldehyde alpha-CDs. By decreasing pH, the fluorescent intensity of TNS was increased with time, indicating cleavage of the terminal hydrazone bonds followed by beta-CD-succinate release. The terminal alpha-CD moieties of the polyrotaxane are useful for self-assembled formation with some guest molecules. [Diagram: see text]  相似文献   

16.
This study sought to evaluate the in vitro transfection efficiency of plasmid DNA (pDNA)-loaded chitosan-modified poly(DL-lactide-co-glycolide) nanospheres (CS-PLGA NS) in a gene-delivery system. Using the emulsion solvent diffusion (ESD) method, pDNA-loaded PLGA NS was prepared and the surface of the PLGA NS was modified by binding to CS. Gene transfection ability of CS-PLGA NS was examined in A549 cells. The luciferase gene was used as a reporter gene. The pattern of luciferase activity by pDNA-loaded CS-PLGA NS was initially weak, but gradually grew stronger before decreasing activity. These phenomena should be in accordance with the sustained-release profile of pDNA from PLGA NS in the cytosol and the pDNA protection against DNase. Positively charged CS-PLGA NS was found, by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt (MTS) assay, not to exhibit cytotoxicity on A549 cells. These results suggest that CS-PLGA NS are potential contributors to efficient pDNA delivery due to their increased interactions with cells and lack of cytotoxic effects.  相似文献   

17.
Poly(ethylene imine) (PEI) is an established non-viral vector system for the delivery of various nucleic acids in gene therapy applications. Polyelectrolyte complexes between both compounds, so called polyplexes, are formed by electrostatic interactions of oppositely charged macromolecules and are thought to facilitate uptake into cells. Such complexes form spontaneously and on lab scale they are usually prepared by mixing solutions through pipetting. Hence, an optimized preparation procedure allowing the scale-up of well-defined polyplexes would be of general interest. We developed a new method for microfluidic polyplex preparation on a chip. The mixing behaviour within the microfluidic channels was evaluated. Polyplexes with PEI and plasmid DNA were prepared using this method, in comparison to the standard pipetting procedure. Sizes and polydispersity indices of these complexes were examined. The influence of various parameters on the polyplex characteristics and the suitability of this production procedure for other PEI-based complexes were also evaluated. It was shown that polyplexes could easily be prepared by microfluidics. The ratio of PEI to DNA was most important for the formation of small polyplexes, whereas other parameters had minor influence. The size of polyplexes prepared with this new method was observed to be relatively constant between 140 nm and 160 nm over a wide range of complex concentrations. In comparison, the size of polyplexes prepared by pipetting (approximately 90 nm to 160 nm) varied considerably. The versatility of this system was demonstrated with different (targeted) PEI-based vectors for the formation of complexes with pDNA and siRNA. In conclusion, polyplex preparation using microfluidics could be a promising alternative to the standard pipetting method due to its suitability for preparation of well-defined complexes with different compositions over a wide range of concentrations.  相似文献   

18.
A supramolecular cross‐linked cross‐linker, capable of introducing rotaxane cross‐links to vinyl polymers, has been developed for the rational synthesis of polyrotaxane networks. The experimental results reveal that the combination of an oligocyclodextrin (OCD) and a terminal bulky group‐tethering macromonomer (TBM) forms a polymer‐network structure having polymerizable moieties through supramolecular cross‐linking. Radical polymerization of a variety of typical vinyl monomers in the presence of the vinylic supramolecular cross‐linker (VSC) afforded the corresponding vinyl polymers cross‐linked through the rotaxane cross‐links (RCP) as transparent stable films in high yields under both photoinitiated and thermal polymerization conditions. A poly(N,N‐dimethylacrylamide)‐based hydrogel synthesized by using VSC, RCPDMAAm, displayed a unique mechanical property. The small‐angle X‐ray scattering (SAXS) results, indicating patterns characteristic of a polyrotaxane network, clearly suggested the presence and role of the rotaxane cross‐links. The confirmation of the introduction of rotaxane‐cross‐links into vinyl polymers strongly reveals the significant usefulness of VSC.  相似文献   

19.
Surface modification by poly(ethylene glycol) (PEGylation) has been acknowledged as a powerful strategy in minimizing non-specific reactions for biomedical devices. Once applied into manufacture of drug/gene delivery systems, PEGylation has demonstrated to significantly improve their biocompatibility and stealthiness in physiological environment. Nonetheless, reluctant cell membrane affinities thus cellular uptake efficiencies owing to PEGylation brought up further issues that are imperative to be resolved. Pertain to this PEGylation dilemma, we attempted to introduce peptide (GPLGVRG) linkage between block copolymer of PEG-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} PAsp(DET), wherein the cationic PAsp(DET) could self-assemble with pDNA into nanoscaled complex core. Noteworthy was the peptide linkage whose amino acids sequence could be specifically recognized and degraded by matrix metalloproteinases (MMPs) (overexpressed in extracellular milieu of tumors). Therefore, our subsequent studies validated facile detachment of PEGylation from the aforementioned polyplex micelles upon treatment of MMPs, which elicited improved cytomembrane affinities and cellular uptake efficiencies. In addition, promoted escape from endosome entrapment was also confirmed through direct endosome membrane destabilization by PAsp(DET), which was further elucidated to be attributable to dePEGylation as well as elevated charged density of PAsp(DET) in acidic endosomes. These benefits from dePEGylation eventually contributed to promoted gene expression at the affected cells and potent tumor growth suppression based on anti-angiogenic approach. Therefore, our developed strategy has provided a facile approach in overcoming the dilemma of PEGylation, which could be informative in design of drug/gene delivery systems.  相似文献   

20.
《中国化学快报》2020,31(12):3143-3148
Surface modification by poly(ethylene glycol) (PEGylation) has been acknowledged as a powerful strategy in minimizing non-specific reactions for biomedical devices. Once applied into manufacture of drug/gene delivery systems, PEGylation has demonstrated to significantly improve their biocompatibility and stealthiness in physiological environment. Nonetheless, reluctant cell membrane affinities thus cellular uptake efficiencies owing to PEGylation brought up further issues that are imperative to be resolved. Pertain to this PEGylation dilemma, we attempted to introduce peptide (GPLGVRG) linkage between block copolymer of PEG-poly{N'-[N-(2-aminoethyl)-2-aminoethyl]aspartamide} PAsp(DET), wherein the cationic PAsp(DET) could self-assemble with pDNA into nanoscaled complex core. Noteworthy was the peptide linkage whose amino acids sequence could be specifically recognized and degraded by matrix metalloproteinases (MMPs) (overexpressed in extracellular milieu of tumors). Therefore, our subsequent studies validated facile detachment of PEGylation from the aforementioned polyplex micelles upon treatment of MMPs, which elicited improved cytomembrane affinities and cellular uptake efficiencies. In addition, promoted escape from endosome entrapment was also confirmed through direct endosome membrane destabilization by PAsp(DET), which was further elucidated to be attributable to dePEGylation as well as elevated charged density of PAsp(DET) in acidic endosomes. These benefits from dePEGylation eventually contributed to promoted gene expression at the affected cells and potent tumor growth suppression based on anti-angiogenic approach. Therefore, our developed strategy has provided a facile approach in overcoming the dilemma of PEGylation, which could be informative in design of drug/gene delivery systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号