首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A new and accurate chiral liquid chromatographic method has been developed for determination of the enantiomeric purity of montelukast sodium (R enantiomer) in bulk drugs and dosage forms. Normal phase chromatographic separation was performed on an immobilized amylose-based chiral stationary phase with n-hexane–ethanol–1,4-dioxane–trifluoroacetic acid–diethylamine 65:25:10:0.3:0.05 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. The elution time was approximately 15 min. The resolution (R S) between the enantiomers was >3. The mobile phase additives trifluoroacetic acid and diethylamine played a key role in achieving chromatographic resolution between the enantiomers and also in enhancing chromatographic efficiency. Limits of detection and quantification for the S enantiomer were 0.07 and 0.2 μg, respectively, for a test concentration of montelukast sodium of 1,000 μg mL?1 and 10 μL injection volume. The linearity of the method for the S enantiomer was excellent (R 2 > 0.999) over the range from the LOQ to 0.3%. Recovery of the S enantiomer from bulk drug samples and dosage forms ranged from 97.0 to 103.0%, indicative of the high accuracy of the method. Robustness studies were also conducted. The sample solution stability of montelukast sodium was determined and the compound was found to be stable for a study period of 48 h.  相似文献   

2.
A new and accurate chiral liquid chromatographic method has been developed for the determination of enantiomeric purity of darifenacin [(S)-enantiomer] in bulk drugs and extended release tablets. Normal phase chromatographic separation was performed on an immobilized cellulose based chiral stationary phase (Chiralpak-IC) with n-hexane:ethanol:diethylamine (50:50:0.3, v/v/v) as mobile phase at a flow rate of 1.0 mL min?1. The elution time was ~15 min. The resolution (R s ) between the enantiomers was greater than four and interestingly the (R)-enantiomer was eluted prior to darifenacin in the developed method. The limit of detection (LOD) and limit of quantification (LOQ) for the (R)-enantiomer were 0.02 μg and 0.07 μg, respectively, for a 10 μL injection volume. The method was extensively validated in terms of linearity, precision and accuracy and satisfactory results were obtained. Robustness studies were also conducted. The sample solution stability of darifenacin was determined and the compound was found to be stable for a study period of 48 h.  相似文献   

3.
A simple, rapid, and stability-indicating reversed-phase high-performance liquid chromatographic (LC) method for analysis for dutasteride has been successfully developed. Chromatography was performed on a 150 mm × 4.6 mm C18 column with acetonitrile–water 60:40 (v/v) as isocratic mobile phase at 1.0 mL min?1. Ultraviolet detection of dutasteride was at 210 nm. Its retention time was approximately 10 min and its peak was symmetrical. Response was a linear function of concentration over the range 0.2–1 μg mL?1 (R 2 = 0.997) and the limits of detection and quantitation were was 0.05 and 0.10 μg mL?1, respectively. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting dutasteride stock solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from dutasteride. The method was used to quantify dutasteride in pharmaceutical preparations.  相似文献   

4.
Sami El Deeb 《Chromatographia》2010,71(9-10):783-787
An LC method was developed and validated for the enantioselective separation and enantiomeric impurity quantitation of atenolol. Separation of the atenolol enantiomers on the Chirobiotic V2 (150 mm × 4.6 mm, 5 μm) column was best achieved using a ternary mobile phase of methanol–acetonitrile-triethylamine acetate 0.5% (w/v), pH 4.5 in a ratio of (45:50:5; v/v/v). Good resolution value of R s  = 3 was obtained at a flow rate of 1 mL min?1 within a total run time of less than 40 min. Peak identification was achieved using the standard reference of individual enantiomers. The peak of the impurity was eluted in front of the peak of the main enantiomer. Detection was performed by UV at 226 nm. Within and between day’s repeatabilities for both retention time and peak area were investigated at three concentration levels and found to be low. The method was also found to be efficient for the determination of atenolol enantiomeric impurity. An impurity quantitation level of (R)-atenolol down to 0.08% relative to the main enantiomer (S)-atenolol was found possible.  相似文献   

5.
Iriflophenone 2-O-α-rhamnopyranoside (IP2R) is one of the main bioactive constituents of the leaves of Aquilaria sinensis (Lour.) Gilg, used in traditional Chinese medicines. A simple, rapid, and sensitive reversed-phase high-performance liquid chromatographic method has been developed for analysis of IP2R in rat plasma after intravenous administration. The analyte was extracted from plasma samples with methanol as deproteinization agent. Analysis was performed on an 250 mm × 4.6 mm i.d., 5-μm particle, C18 column with a 8 mm × 4.6 mm i.d., 5-μm particle, RP-18 guard column; the mobile phase was acetonitrile–H2O–acetic acid 22:78:0.01 (v/v) at a flow-rate of 1.0 mL min?1. UV detection was at 289 nm. The calibration plot was linear in the range 0.01–33.33 μg mL?1 (r = 0.9997, n = 5) in rat plasma. The lower limits of detection and quantification were 0.004 and 0.01 μg mL?1. Intra-day and inter-day precision were 1.18–3.96 and 1.29–2.81%, respectively. Average extraction recovery from plasma was more than 95%. This assay method was successfully used to study the pharmacokinetics of IP2R in rats after a single dose of 25 mg kg?1 by intravenous administration; the plasma concentration–time curve of IP2R conformed to a two-compartment open model.  相似文献   

6.
In this study we describe the enantioseparation of aromatic β3-amino acids by precolumn derivatization with o-phthaldialdehyde and N-isobutyryl-l-cysteine. Derivatization conditions were studied in detail for (R,S)-β-phenylalanine and (R,S)-β-tyrosine revealing a reaction time of 1 min and a molar ratio of the reagents β³-amino acid to o-phthaldialdehyde to N-isobutyryl-l-cysteine of 1:25:25 as optimal. The method was validated for (R,S)-β-phenylalanine in a bacterial cell extract. The analysis provided excellent specificity and reproducibility. The limit of quantification was 25 pmol per 0.5 μL injection. The method could be successfully transferred to the enantioseparation of other β³-amino acids. Enantioseparation of all studied compounds could be achieved in 4–11 min.  相似文献   

7.
Radhakrishnanand  P.  Subba Rao  D. V.  Himabindu  V. 《Chromatographia》2008,68(11):1059-1062

A new and accurate chiral liquid chromatographic method has been developed for the determination of enantiomeric purity of darifenacin [(S)-enantiomer] in bulk drugs and extended release tablets. Normal phase chromatographic separation was performed on an immobilized cellulose based chiral stationary phase (Chiralpak-IC) with n-hexane:ethanol:diethylamine (50:50:0.3, v/v/v) as mobile phase at a flow rate of 1.0 mL min−1. The elution time was ~15 min. The resolution (R s ) between the enantiomers was greater than four and interestingly the (R)-enantiomer was eluted prior to darifenacin in the developed method. The limit of detection (LOD) and limit of quantification (LOQ) for the (R)-enantiomer were 0.02 μg and 0.07 μg, respectively, for a 10 μL injection volume. The method was extensively validated in terms of linearity, precision and accuracy and satisfactory results were obtained. Robustness studies were also conducted. The sample solution stability of darifenacin was determined and the compound was found to be stable for a study period of 48 h.

  相似文献   

8.
Radhakrishnanand  P.  Subba Rao  D. V.  Himabindu  V. 《Chromatographia》2009,69(3-4):369-373

A new and accurate chiral liquid chromatographic method has been developed for the separation of palonosetron hydrochloride (PALO) and its (R,R)-enantiomer in bulk drug samples with an elution time of about 20 min. The chromatographic separation was carried out by normal phase chromatography using an immobilized cellulose based chiral stationary phase (Chiralpak-IC) with a mobile phase composed of n-hexane:ethanol:1,4 dioxane:trifluoroacetic acid:diethylamine (65:30:5:0.3:0.3, v/v) pumped at a flow rate of 1.0 mL min−1. The resolution (R s ) between the enantiomers was found to be greater than 3.0 and interestingly the (R,R)-enantiomer was eluted prior to the (S,S)-enantiomer (PALO) in the developed method. Mobile phase additives, trifluoroacetic acid and diethylamine played a key role in achieving chromatographic resolution between the enantiomers and also in enhancing chromatographic efficiency. The limit of detection (LOD) and limit of quantification (LOQ) of the (R,R)-enantiomer were found to be 0.03 and 0.1 μg respectively for 10 μL injection volume. The developed method shows excellent linearity (r 2 > 0.999) over a range of LOQ to 0.3% for the (R,R)-enantiomer. The percentage recovery of the (R,R)-enantiomer in bulk drug samples ranged from 97.2 to 102.3 revealing good sensitivity of the developed method. Robustness studies were also carried out on the developed method.

  相似文献   

9.
P. D. Bari  A. R. Rote 《Chromatographia》2009,69(11-12):1469-1472
Two new, rapid, precise, accurate and specific chromatographic methods were described for the simultaneous determination of olmesartan medoxomil and hydrochlorothiazide in combined tablet dosage forms. The first method was based on reversed phase liquid chromatography using an Eurosphere 100 RP C18 column (250 × 4.6 mm ID, 5 μm). The mobile phase was methanol–0.05% o-phosphoric acid (60:40 v/v) at a flow rate of 1.0 mL min?1. Commercially available tablets and laboratory mixtures containing both drugs were assayed and detected using a UV detector at 270 nm. The second method involved silica gel 60 F254 high performance thin layer chromatography and densitometric detection at 254 nm using acetonitrile–ethyl acetate–glacial acid (7:3:0.4 v/v/v) as the mobile phase. Calibration curves ranged between 200–600 and 125–375 ng spot?1 for olmesartan and hydrochlorothiazide, respectively.  相似文献   

10.
In the present study, application of Fe3O4 magnetic nanoparticles (MNPs) coated with diethyldithiocarbamate as a solid-phase sorbent for extraction of trace amounts of cadmium (Cd2+) and nickel (Ni2+) ions by the aid of ultrasound was investigated. The analytes were determined by inductively coupled plasma-optical emission spectroscopy. Fe3O4 MNPs were prepared by solvothermal method and characterized with dynamic light scattering, scanning electron microscope and X-ray diffraction. Response surface methodology was used for optimization of the extraction process and modeling the data. The optimal conditions obtained were as follows: chelating agent, 1.2 g L?1; pH, 6.13; sonication time, 13 min and Fe3O4 MNPs, 10.3 mg. The calibration curves were linear over the concentration range of 1–1,000 μg L?1 for Cd2+ and 2.5–1,000 for Ni2+ with the determination coefficients (R 2) of 0.9997 and 0.9995, respectively. The limits of detection were 0.27 μg L?1 for Cd2+ and 0.76 μg L?1 for Ni2+. The relative standard deviations (n = 7, C = 200 μg L?1) for determination of Cd2+ and Ni2+ were 2.0 and 2.7 %, respectively. The relative recoveries of the analytes from tap, river and lagoon waters and rice samples at the spiking level of 10 μg L?1 were obtained in the range of 95–105 %.  相似文献   

11.
A stability-indicating HPLC method has been developed and subsequently validated for the simultaneous determination of domperidone and pantoprazole in commercial tablets. The proposed HPLC method utilizes Phenomenex® Gemini C18 column (150 mm × 4.6 mm i.d., 5 μm) and mobile phase consisting of methanol-acetonitrile-20 mM dipotassium hydrogen phosphate and phosphoric acid buffer pH 7.0 (20:33:47, v/v/v) at a flow rate of 1.19 mL min?1. Quantitation was achieved with UV detection at 285 nm based on peak area with linear calibration curves at concentration ranges 0.5–5.0 μg mL?1 for domperidone and 1.0–10 μg mL?1 for pantoprazole (R 2 > 0.999 for both drugs). The method was validated in terms of accuracy, precision, linearity, limits of detection, limits of quantitation and robustness. This method has been successively applied to pharmaceutical formulation and no interference from the tablet excipients was found. Domperidone, pantoprazole and their combination drug product were exposed to acid, base and neutral hydrolysis, oxidation, dry heat and photolytic stress conditions and the stressed samples were analyzed by the proposed method. As the proposed method could effectively separate the drug from its degradation products, it can be employed as stability-indicating method for the determination of instability of these drugs in bulk and commercial products.  相似文献   

12.
Solid-phase extraction (SPE) and reversed-phase liquid chromatography (RP-LC) have been used for simple, sensitive simultaneous analysis of cyromazine and melamine residues in liquid milk and eggs. The conditions used for SPE and LC were investigated and optimized. A combined cation-exchange–reversed-phase cartridge was used for clean-up, and an ODS (C18) column (150 mm × 4.6 mm i.d., 5-μm particles) with 62:38 (v/v) 5 mm sodium lauryl sulfate (pH 3.4)–acetonitrile as mobile phase was used for RP-LC. Under the optimum conditions the method limit of detection (LOD) for both cyromazine and melamine was 6.2 μg kg?1 for liquid milk samples, and 11.5 μg kg?1 for egg samples. Average recovery of cyromazine and melamine from milk samples was 90.3%, RSD 4.6–5.6%, and 99.6%, RSD 3.2–4.7%, respectively. Average recovery of cyromazine and melamine from egg samples was 85.3%, RSD 1.0–4.7%, and 89.6%, RSD 3.1–5.0%, respectively. The method enables detection of melamine and cyromazine at levels as low as 20.7 μg kg?1 in liquid milk and 38.3 μg kg?1 in egg.  相似文献   

13.
A simple, sensitive and accurate liquid chromatographic method with UV detection was developed and validated to determine voriconazole in a new emulsion formulation. Chromatographic separation was achieved on a Diamonsil C18 column (250 × 4.6 mm I.D., 5 μm) using a mobile phase consisting of acetonitrile-water-acetic acid (40:60:0.25, v/v/v) at a flow rate of 1.0 mL min?1. The UV detection wavelength was set at 256 nm. The linear calibration curves were obtained in the concentration range of 1.00–100 μg mL?1 with the limit of quantification of 1.00 μg mL?1. The within- and between-run precisions in terms of percentage relative standard deviation were lower than 7.4 and 7.1%, respectively. The accuracy in terms of percentage relative error ranged from ?1.5 to 1.4%. This validated method was successfully applied to the determination of the content of voriconazole in a new emulsion formulation.  相似文献   

14.
A convenient ion-pair LC procedure was firstly established for rapid analysis of ethyl 3-hydroxyglutarate (3-EHG) in an enzymatic-hydrolysis mixture, and the detection limit was as low as 0.45 μmol L?1; high repeatability was achieved with intra-day (n = 5) and inter-day (n = 5) relative standard deviation (RSD) values of 1.56 and 2.38%, respectively. The good linearity was established for 3-EHG concentration in the broad range from 0.005 to 0.30 mol L?1, with a coefficient (r) of 0.9992. (S)- and (R)-3-EHG were separated by normal-phase LC after simple derivatization with (R)-(+)-phenylethanamine, ee value (≥95%) of 3-EHG prepared by Lipase B catalyzed hydrolysis of diethyl 3-hydroxyglutatate (3-DHG) was determined after optimization of the mobile phase, and the RSD was 0.75% (n = 9) for repeatability. The results showed that the above methods were highly reproducible and reliable for analysis and separation of (S)-3-EHG from bioconversion mixture.  相似文献   

15.
A new composite electrode of multiwall carbon nanotubes (MWNTs) and 1-dodecyl-3-methylimidazolium hexafluorophosphate (DDMIMPF6) was fabricated to determine rutin. This electrode showed very attractive electrochemical performances compared to other kinds of ionic liquid modified electrodes and notably improved sensitivity and stability. Electrochemical behavior of rutin at the composite electrode had been investigated in pH 2.09 Britton–Robinson buffer solution by cyclic voltammetry and square wave voltammetry. The experimental results suggested that the composite electrode exhibited an electrocatalytic activity toward the redox of rutin. The electrochemical parameters of rutin were calculated with the results of the charge transfer coefficient (α) and the standard rate constant (k s) as 0.48 and 2.09 s?1. Under the selected conditions, the reduction peak current was linearly dependent on the concentration of rutin in the range of 0.03–1.5 μM, with a detection limit of 0.01 μM (S/N?=?3). The relative standard deviation for six times successive determination of 1 μM rutin was 1.6 %. The method was successfully applied to the determination of rutin in tablets and urine samples without the influence of the coexisting substances. In addition, the MWNTs/DDMIMPF6 composite electrode exhibits a distinct advantage of simple preparation, surface renewal, good reproducibility, and stability.  相似文献   

16.
A simple and accurate normal phase liquid chromatographic method was developed for the determination of chiral purity of (1S)-6,11-dioxo-1,2,3,4,6,11-hexahydropyridazino[1,2-b]phthalazine-1-carboxylic acid, S-enantiomer used as key intermediate in the manufacturing of cilazapril bulk drug. Chromatographic separation between (1S)-6,11-dioxo-1,2,3,4,6,11-hexahydropyridazino[1,2-b]phthalazine-1-carboxylic acid, and its opposite enantiomer (1R)-6,11-dioxo-1,2,3,4,6,11-hexahydropyridazino[1,2-b]phthalazine-1-carboxylic acid, R-enantiomer was achieved using a Chiralpak AD-H column using a mobile phase containing hexane, isopropyl alcohol and tri-fluoro acetic acid (80:20:0.1 v/v/v). The resolution between the two enantiomers was found to be more than 3.2. The limit of detection (LOD) and limit of quantitation (LOQ) of the R-enantiomer was 0.15 and 0.5 μg mL?1, respectively, for 10 μL injection volume. The percentage recoveries of the R-enantiomer ranged from 96.5 to 105.3 in the bulk samples of (1S)-6,11-dioxo-1,2,3,4,6,11-hexahydropyridazino[1,2-b]phthalazine-1-carboxylic acid. The test solution and mobile phase was observed to be stable up to 24 h after the preparation. The developed method was validated as per International Conference on Harmonization guidelines in terms of LOD, LOQ, precision, linearity, accuracy, robustness and ruggedness.  相似文献   

17.
A rapid, sensitive and specific reversed-phase liquid chromatographic method was developed and validated for the quantification of p-hydroxyphenethyl anisate (HPA), which is one of the main constituents of Notopterygium Radix (underground parts of Notopterygium incisum and N. forbesii), in rat plasma, and study its pharmacokinetics after the intravenous administration of 40 mg kg?1 HPA to rats. The method involves a plasma clear-up step using liquid–liquid extraction by ethyl acetate, followed by RP-LC separation and detection. Separation of HPA was performed on an analytical Diamonsil ODS C18 column equipped with a Dikma ODS C18 EasyGuard column using a mobile phase consisting of MeOH–H2O (75:25, v/v) at a flow-rate of 1.0 mL min?1. The UV detection was performed at a wavelength of 256 nm. The linear calibration curves were obtained in the concentration range of 0.05–5.0 μg mL?1 (r = 0.9992, n = 5) in rat plasma with the lower limit of detection of 0.01 μg mL?1 and the lower limit of quantification of 0.04 μg mL?1, and the extraction recovery of HPA was calculated to be the range of 82.01–86.66%. The intra- and inter-day precisions in terms of % relative standard deviation were lower than 2.33 and 3.99% in rat plasma, respectively, with accuracies ranging from 91.22 to 110.5%. The developed method was suitable for the determination and pharmacokinetic study of HPA in rat plasma.  相似文献   

18.
A isocratic, selective and accurate LC method of analysis of mexiletine in pharmaceutical preparations has been developed and validated. The method is based on derivatization of mexiletine with 4-chloro-7-nitrobenzofurazan in pH 9.0 borate buffer to yield a yellow product. Chromatography was performed on a C18 column (150 × 4.6 mm i.d.) with acetonitrile–water 80:20 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. UV–visible absorbance detection was performed at 458 nm. The retention time of the mexiletine derivative was 4.10 min, and response was a linear function of concentration in the range 0.5–4.0 μg mL?1 (r = 0.9998). The limits of detection and quantification were 0.05 and 0.15 μg mL?1, respectively. Method validation revealed precision, sensitivity, and robustness were acceptable. Low RSD values are indicative of high precision, and high recovery values are indicative of the accuracy of the method. Results obtained by use of the proposed method for analysis of the mexiletine content of pharmaceutical a preparation were compared with those obtained by use of the official method. The method has been used for analysis of pharmaceutical preparations.  相似文献   

19.
A simple, sensitive high performance liquid chromatographic method with UV detection was developed and validated for determination of insulin in rat plasma, using methyl paraben as an internal standard. Insulin was extracted from plasma by a liquid–liquid extraction with a mixture of dichloromethane and n-hexane (1:1, v/v) followed by an acidic back extraction. Chromatographic separation was achieved isocratically with a Phenomenex® C18 analytical column (150 × 4.6 mm ID, 5 μm) at ambient room temperature. The calibration curves were linear within a concentration range of 0.7–8.4 μg mL?1 (r 2 = 0.9994). The inter-day and intra-day accuracy and precision were ≤3.33 and ≤5.55%. The limit of detection (LOD) and limit of quantification (LOQ) were 0.35 and 0.7 μg mL?1. The average recovery was 87.86% for insulin and 83.52% for methyl paraben. Insulin containing plasma samples were stable at ?20 °C for 7 days. Validated HPLC method was successfully applied to a pharmacokinetic study of insulin in streptozotocin induced diabetic rats.  相似文献   

20.
A stability-indicating reversed-phase LC method for analysis of aceclofenac and paracetamol in tablets and in microsphere formulations has been developed and validated. The mobile phase was 80:20 (v/v) methanol–phosphate buffer (10 mM at pH 2.5 ± 0.02). UV detection was at 276 nm. The method was linear over the concentration ranges 16–24 and 80–120 μg mL?1 for aceclofenac and paracetamol, respectively, with recovery in the range 100.9–102.22%. The limits of detection and quantitation for ACF were 0.0369 and 0.1120 μg mL?1, respectively; those for PCM were 0.0631 and 0.1911 μg mL?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号