首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive, selective, precise, and stability-indicating HPTLC method for analysis of moclobemide in the bulk drug and in formulations has been established and validated. Aluminium TLC plates precoated with silica gel 60 F254 were used with benzene–methanol–40% ammonia 7:3:0.1 (v/v) as mobile phase. Densitometric analysis was performed in absorbance mode at 238 nm. Compact bands were obtained for moclobemide (R F 0.67 ± 0.02; n = 6). The drug was subjected to acidic and alkaline hydrolysis, oxidation, dry heat treatment, and photodegradation. The drug undergoes degradation under acidic, basic, and oxidising conditions. The degradation products were well resolved from the pure drug with significantly different R F values, so the method can be regarded as stability-indicating. Response to moclobemide was a linear function of amount in the range 50–600 ng per band, with a correlation coefficient, r 2, of 0.9967 ± 0.51. LOD and LOQ, determined experimentally, were 10 and 30 ng per band, respectively. Statistical analysis proves the method is repeatable and specific for analysis of moclobemide. The method was used to investigate the kinetics of alkaline degradation. The Arrhenius plot was constructed and the activation energy calculated.  相似文献   

2.

A novel stability-indicating LC assay method was developed and validated for quantitative determination of olmesartan in bulk drugs and in pharmaceutical dosage form in the presence of degradation products generated from forced degradation studies. An isocratic, reversed phase LC method was developed to separate the drug from the degradation products, using an Ace5-C18 (250 mm × 4.6 mm, 5 μm) column, and 50 mM ammonium acetate (pH-5.5 by acetic acid) and acetonitrile (70:30 v/v) as a mobile phase. The detection was carried out at the wavelength of 235 nm. The olmesartan was subjected to stress conditions of hydrolysis (acid, base), oxidation, photolysis and thermal degradation. Degradation was observed for olmesartan in acid, base and in 30% H2O2 conditions. The drug was found to be stable in the other stress conditions attempted. The degradation products were well resolved from the main peak. The percentage recovery of olmesartan ranged from (99.89 to 100.95%) in pharmaceutical dosage form. The developed method was validated with respect to linearity, accuracy (recovery), precision, specificity and robustness. The forced degradation studies prove the stability-indicating power of the method.

  相似文献   

3.
A new stability-indicating high-performance liquid chromatographic method has been developed for simultaneous analysis of metformin hydrochloride (MET) and sitagliptin phosphate (SIT) in pharmaceutical dosage forms. Chromatographic separation was achieved on a C8 column. The mobile phase was methanol–water 45:55 % (v/v) containing 0.2 % (w/v) n-heptanesulfonic acid and 0.2 % (v/v) triethylamine; the pH was adjusted to 3.0 with orthophosphoric acid. The flow rate was 1 mL min?1 and the photodiode-array detection wavelength was 267 nm. The linear regression coefficients for metformin and sitagliptin were 0.9998 and 0.9996 in the concentration ranges 50–450, and 10–150 μg mL?1, respectively. The relative standard deviations for intra and inter-day precision were below 1.5 %. The drugs were subjected to a variety of stress conditions—acidic and basic hydrolysis, and oxidative, photolytic, neutral, and thermal degradation. The products obtained from photolytic degradation were similar to those from neutral hydrolytic degradation and different from produced by acidic and basic hydrolysis. The method resulted in detection of 15 degradation products (D1–D15); among these, the structures of D1, D3, D9, and D13 were identified. The respective mass balance for MET and SIT was found to be close to 97.60 and 99.12 %. The specificity of the method is suitable for a stability-indicating assay.  相似文献   

4.
A simple, sensitive, selective, precise and stability-indicating thin-layer chromatographic method for determination of dutasteride both as a bulk drug and as pharmaceutical tablets was developed and validated as per the International Conference on Harmonization guidelines. The method employed thin-layer chromatography aluminium plates precoated with silica gel 60F254 as the stationary phase and the mobile phase consisted of acetonitrile:methanol:dichloromethane in the ratio of 2.0:1.0:2.0, v/v/v. This solvent system was found to give compact spots for dutasteride (R f value of 0.64 ± 0.02). Densitometric analysis of dutasteride was carried out in the absorbance mode at 244 nm. The linear regression analysis data for the calibration plots showed good linear relationship with r = 0.9943 with respect to peak area in the concentration range of 100–600 ng per band. The method was validated for precision, accuracy, ruggedness and recovery. The limits of detection and quantitation were 7.54 and 22.85 ng per band, respectively. Dutasteride was subjected to acid and alkali hydrolysis, oxidation, photo degradation, dry heat and wet heat treatment. The drug undergoes degradation under acidic, basic conditions, photolytic, oxidative and upon wet and dry heat treatment. The degraded products were well separated from the pure drug. The statistical analysis proves that the developed method for quantification of dutasteride as bulk drug and from pharmaceutical tablets is reproducible and selective. As the method could effectively separate the drug from its degradation products, it can be employed as stability-indicating.  相似文献   

5.
A stability-indicating HPLC method has been developed and subsequently validated for the simultaneous determination of domperidone and pantoprazole in commercial tablets. The proposed HPLC method utilizes Phenomenex® Gemini C18 column (150 mm × 4.6 mm i.d., 5 μm) and mobile phase consisting of methanol-acetonitrile-20 mM dipotassium hydrogen phosphate and phosphoric acid buffer pH 7.0 (20:33:47, v/v/v) at a flow rate of 1.19 mL min?1. Quantitation was achieved with UV detection at 285 nm based on peak area with linear calibration curves at concentration ranges 0.5–5.0 μg mL?1 for domperidone and 1.0–10 μg mL?1 for pantoprazole (R 2 > 0.999 for both drugs). The method was validated in terms of accuracy, precision, linearity, limits of detection, limits of quantitation and robustness. This method has been successively applied to pharmaceutical formulation and no interference from the tablet excipients was found. Domperidone, pantoprazole and their combination drug product were exposed to acid, base and neutral hydrolysis, oxidation, dry heat and photolytic stress conditions and the stressed samples were analyzed by the proposed method. As the proposed method could effectively separate the drug from its degradation products, it can be employed as stability-indicating method for the determination of instability of these drugs in bulk and commercial products.  相似文献   

6.
This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min?1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL?1 (r = 0.9999) for TR and 40–160 μg mL?1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.  相似文献   

7.
A simple, rapid, and stability-indicating reversed-phase high-performance liquid chromatographic (LC) method for analysis for dutasteride has been successfully developed. Chromatography was performed on a 150 mm × 4.6 mm C18 column with acetonitrile–water 60:40 (v/v) as isocratic mobile phase at 1.0 mL min?1. Ultraviolet detection of dutasteride was at 210 nm. Its retention time was approximately 10 min and its peak was symmetrical. Response was a linear function of concentration over the range 0.2–1 μg mL?1 (R 2 = 0.997) and the limits of detection and quantitation were was 0.05 and 0.10 μg mL?1, respectively. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting dutasteride stock solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from dutasteride. The method was used to quantify dutasteride in pharmaceutical preparations.  相似文献   

8.
A selective and validated stability-indicating LC method was developed for the kinetic study of the degradation of PAC-1, which was carried out in aqueous solutions at 37, 60, 80 and 100 °C with pH 1.5–9.0. Separation was performed on a Kromasil C18 column with acetonitrile–water–fomic acid (30:70:0.1, v/v/v) as mobile phase with a flow rate of 1.0 mL min?1 at 281 nm. The degradation rate obtained indicated a first-order reaction law and the activation energy (E a) was calculated. The results showed that temperature and pH values were significant factors affecting the degradation of PAC-1. An unknown degradation product in alkaline condition was isolated using a reverse-phase semi-preparative LC system. The structure of the degradation product is identified as 2-hydroxy-3-(2-propenyl)-[[2-hydroxy-3-(2-propenyl)phenyl]methylene]hydrazone utilizing the 1H NMR, 13C NMR, IR and Q-TOF-MS techniques.  相似文献   

9.
A stability-indicating liquid chromatographic method was developed and validated for quantitative determination of olmesartan medoxomil (OLM) in coated tablets in the presence of degradation products generated under stress conditions. An isocratic LC separation was performed using a Phenomenex RP-18 column using a mobile phase consisting of water:triethylamine:acetonitrile (60:0.3:40 v/v/v, pH adjusted to 6.3 with phosphoric acid). The flow rate was 1.2 mL min?1 and the detection was achieved with a photodiode array detector set at 257 nm. The response was linear over a range of 10.0 to 30.0 μg mL?1 (r = 0.9999). The specificity and stability-indicating capability of the method was verified subjecting the reference substance and drug product to hydrolytic, oxidative, photolytic, and thermal stress conditions. The method showed a good and consistent recovery (100.2%) with low intra- and inter-day relative standard deviation (RSD) (≤1.0%). A considerable degradation occurred in all stress conditions and the degradation product was well resolved from the main peak. There was no interference of the excipients in the determination of the active pharmaceutical ingredient. Thus, the proposed method was found to be stability-indicating and can be used for routine analysis for quantitative determination of OLM in coated tablets without the interference of major degradation products.  相似文献   

10.

This paper discusses the development of a stability-indicating reversed-phase LC method for analysis of cholecalciferol as the bulk drug and in formulations. The mobile phase was acetonitrile–methanol–water 50:50:2 (v/v). The calibration plot for the drug was linear in the range 0.4–10 μg mL−1. The method was accurate and precise with limits of detection and quantitation of 64 and 215 ng, respectively. Mean recovery was 100.71%. The method was used for analysis of cholecalciferol in pharmaceutical formulations in the presence of its degradation products and commonly used excipients.

  相似文献   

11.
A forced degradation study of idebenone was conducted under conditions of UV irradiation, acid, basic and oxidative hydrolysis and in order to develop an isocratic stability-indicating LC-UV method for drug quantification in chitosan and N-carboxymethylchitosan nanoparticles obtained by spray drying. The drug was more labile to alkaline treatment than under the other forced degradation conditions. Idebenone and its degradation products were optimally resolved (resolution >4) on a Luna Phenomenex C18 column with mobile phase composed by methanol:water: (80:20% v/v) at a flow rate of 1.0 mL min?1, at 30 °C, using wavelength of 279 nm for drug detection. The method was linear, over a drug concentration range of 2 to 10 μg mL?1. The RSD% value of intra- and inter-day precision studies was <1.5. The method showed excellent recoveries (99.4 to 101.1%). The LOD and LOQ values were found to be 0.18 and 0.59 μg mL?1, respectively. In conclusion this method can be used as a rapid and accurate assay of idebenone in the nanoparticles during stability tests.  相似文献   

12.
A forced degradation study on ropinirole hydrochloride in bulk and in its modified release tablets was conducted under the conditions of hydrolysis, oxidation and photolysis in order to develop an isocratic stability-indicating LC-UV method for quantification of the drug in tablets. An impurity peak in standard solution was found to increase under acidic and neutral hydrolytic conditions while another degradation product was formed under alkaline condition. The drug and its degradation products were optimally resolved on a Hypersil C18 column with mobile phase composed of diammonium hydrogen orthophosphate (0.05 M; pH 7.2), tetrahydrofuran and methanol (80:15:5% v/v) at a flow rate of 1.0 mL min?1 at 30 °C using 250 nm as detection wavelength. The method was linear in the range of 0.05–50 μg mL?1 drug concentrations. The %RSD of inter- and intra-day precision studies was <1. The system suitability parameters remained unaffected during quantification of the drug on three different LC systems. Excellent recoveries (101.59–102.28%) proved that the method was sufficiently accurate. The LOD and LOQ were found to be 0.012 and 0.040 μg mL?1, respectively. Degradation behaviour of the drug in both bulk and tablets was similar. The drug was very unstable to hydrolytic conditions but stable to oxidative and photolytic conditions. The method can be used for rapid and accurate quantification of ropinirole hydrochloride in tablets during stability testing. Based on chemical reactivity of ropinirole in different media, the degradation products were suspected to be different from the known impurities of the drug.  相似文献   

13.
A novel, sensitive, stability-indicating gradient RP-LC method has been developed for quantitative analysis of balsalazide disodium and its related impurities both in the bulk drug and in pharmaceutical dosage forms. Efficient chromatographic separation was achieved on a C18 stationary phase with a simple mobile-phase gradient prepared from methanol and phosphate buffer (10 mm potassium dihydrogen orthophosphate monohydrate, adjusted to pH 2.5 by addition of orthophosphoric acid). The mobile-phase flow rate was 1.0 mL min?1. Quantification was achieved by use of ultraviolet detection at 240 nm. Under these conditions resolution of balsalazide disodium from its three potential impurities was greater than 2.0. Regression analysis resulted in a correlation coefficient greater than 0.99 for balsalazide disodium and all three impurities. This method was capable of detecting the three impurities at 0.003% of the test concentration of 0.3 mg mL?1, using an injection volume of 10 μL. Inter-day and intra-day precision for all three impurities and for balsalazide disodium was within 2.0% RSD. Recovery of balsalazide disodium from the bulk drug (99.2–101.5%) and from pharmaceutical dosage forms (99.8–101.3%), and recovery of the three impurities (99.1–102.1%) was consistently good. The test solution was found to be stable in 70:30 (v/v) methanol–water for 48 h. When the drug was subjected to hydrolytic, oxidative, photolytic, and thermal stress, acidic and alkaline hydrolysis and oxidizing conditions led to substantial degradation. The RP-LC method was validated for linearity, accuracy, precision, and robustness.  相似文献   

14.

A simple stability-indicating reversed-phase liquid chromatographic method with diode-array detection was developed and validated for the quantitative determination of ebastine in tablets and syrup. The LC method was carried out on a C18 column with acetonitrile:phosphoric acid 0.1% pH 3.0 (55:45, v/v) as mobile phase, at a flow rate of 1.2 mL min−1. Ultraviolet detection of ebastine was at 254 nm. A linear response (r = 0.9999) was observed in the range of 10–80 μg mL−1. The RSD values for intra- and inter-day precision studies showed good results (RSD < 2%) and accuracy was greater than 98%. Validation parameters such as specificity and robustness were also determined. The method was found to be stability-indicating and can be applied to quantitative determination of ebastine in tablets and syrup.

  相似文献   

15.
A simple isocratic stability indicating LC method was developed and validated for the determination of famciclovir in bulk drug and pharmaceutical dosage form. A mixture of 0.05 M potassium dihydrogen orthophosphate buffer and acetonitrile (80:20 v/v) was used as mobile phase at a flow rate of 1.0 mL min?1. Hypersil BDS C18 (250 mm × 4.6 mm × 5 μm) column was used and the eluents were monitored at 220 nm. Forced degradation studies were performed for famciclovir active substance, reconstituted matrix and 500 mg tablets using the parameters like acid, base, peroxide, temperature, light, and relative humidity. Peak purity index was checked using PDA detection to demonstrate the specificity and stability indicating nature of the method. The developed method was validated for precision, ruggedness, linearity, LOD, LOQ, range, robustness and accuracy. The developed method can be used for regular quality control and stability study applications of famciclovir bulk drug and tablet dosage forms.  相似文献   

16.
Cabergoline (CAB) is an ergot alkaloid derivative with dopamine agonist activity. A novel, simple, and rapid stability-indicating high-performance liquid chromatographic (HPLC) method for assay of CAB in tablets has been developed and validated. Chromatography was performed on a 4.6 mm i.d. × 250 mm, 5 μm particle, cyano column with acetonitrile–10 mM phosphoric acid, 35:65 (v/v), containing 0.04% triethylamine, as mobile phase, at a flow rate of 1.0 mL min?1, and UV detection at 280 nm. Response was a linear function of concentration in the range 0.1–4 μg mL?1 (r 2 = 0.9999). The recovery of the method was good (99.45%) and RSD values for intra-day and inter-day precision were 0.24–0.88% and 0.66–1.19%, respectively. The method can be used for quality-control assay of CAB in tablets, for stability studies, and for in vitro dissolution studies.  相似文献   

17.

This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min−1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL−1 (r = 0.9999) for TR and 40–160 μg mL−1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.

  相似文献   

18.
A simple rapid and stability-indicating LC method using a narrow-bore column has been developed, fully validated, and applied to the quantification of alfuzosin in pharmaceutical formulations. Chromatography was achieved isocratically on a narrow-bore, 5-μm particle size, C8 analytical column. The mobile phase was a 35:65 (v/v) 0.0125 m ammonium formate–acetonitrile at a flow rate of 0.35 mL min?1. Detection was by UV absorption at 245 nm. Evaluation over the range 200–800 ng mL?1 revealed linearity was good. Limits of detection and quantification for alfuzosin were 22.9 and 69.5 ng mL?1, respectively. Intra-day and inter-day RSD were less than 6.4%, and the relative percentage error was less than ?1.7% (n = 5). Accelerated degradation performed under different stress conditions including oxidation, hydrolysis, and heat, proved the selectivity of the procedure. The method was successfully used for quality-control and content-uniformity testing of commercial tablets.  相似文献   

19.
A stability-indicating hydrophilic interaction liquid chromatography (HILIC) method has been developed and validated for the quantitative determination of Brimonidine tartrate (BT) formulated as an ophthalmic solution. Isocratic separation was achieved using an acetonitrile-buffer mixture (92:8, v/v) at pH 7.1 on an unmodified silica column (250 × 4.6 mm, 5 μm). The drug was subjected to oxidative, hydrolytic, photolytic and thermal stress conditions and complete separation was achieved for the parent compound and degradation products. The influence of acetonitrile, pH and ionic strength of the buffer was studied. Linearity range and recoveries for BT were 100–400 μg mL?1 and 100.12%, respectively. The method was validated for BT and indicated that the method was sufficiently sensitive with a limit of detection at 0.005 μg mL?1 and a limit of quantitation at 0.02 μg mL?1, respectively.  相似文献   

20.
A reversed-phase liquid chromatography (RP-LC) method was validated for the determination of rupatadine in pharmaceutical dosage forms. The LC method was carried out on a Gemini C18 column (150 mm × 4.6 mm I.D.), maintained at 30 °C. The mobile phase consisted of ammonium acetate buffer (pH 3.0; 0.01 M) with 0.05% of 1-heptanesulfonic acid–acetonitrile (71.5:28.5, v/v), run at a flow rate of 1.0 mL min?1 and using photodiode array (PDA) detection at 242 nm. The chromatographic separation was obtained with retention time of 5.15 min, and was linear in the range of 0.5–400 μg mL?1 (r = 0.9999). The specificity and stability-indicating capability of the method was proven through the degradation studies and showing also, that there was no interference of the excipients. The accuracy was 100.39% with bias lower than 0.58%. The limits of detection and quantitation were 0.01 and 0.5 μg mL?1, respectively. Moreover, method validation demonstrated acceptable results for precision, sensitivity and robustness. The proposed method was applied for the analysis of pharmaceutical dosage forms assuring the therapeutic efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号