首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A simple, rapid and accurate liquid chromatography method using ultrafiltration to pretreat cerebrospinal fluid (CSF) samples was developed to determine meropenem concentrations in human CSF in clinical settings. Meropenem in CSF samples was stabilized by mixing with 1 mol L?1 3-morpholinopropanesulfonic acid buffer (pH 7.0) (1:1). The mixture was transferred to a Nanosep 10 K centrifugal filter device; after centrifugation, the filtrate was subjected to reversed-phase LC and the eluate was monitored at 300 nm. The retention time for meropenem was 5.8 min. The calibration curve of meropenem in human CSF was linear over 0.05–50 μg mL?1. The intra-day and inter-day precision was 0.27–5.66 % and accuracy was 99.0–109.5 %. The limit of detection was 0.01 μg mL?1. This method was successfully applied to neurosurgical patients, showing that it is applicable for therapeutic drug monitoring in patients receiving meropenem.  相似文献   

2.
A liquid chromatographic method for analysis of pazufloxacin mesilate in human plasma and urine has been developed and validated for selectivity, sensitivity, accuracy, precision, and stability in pharmacokinetic analysis. The sensitivity of the method was 0.02 μg mL?1 in plasma and 0.5 μg mL?1 in urine, with overall intra-day and inter-day precision (RSD < 10%) and accuracy (90–120%) acceptable for clinical pharmacokinetic analysis. Recovery from plasma and urine was 80–110% for both pazufloxacin mesilate and enoxacin, the internal standard. Pazufloxacin was stable in both plasma and urine, with no significant degradation under four different conditions. The method was successfully used in a preliminary study of the bioavailability of pazufloxacin mesilate in healthy human volunteers after intravenous administration of 300 and 500 mg.  相似文献   

3.
A sensitive and high selective chemiluminescence (CL) method was developed for the determination of lincomycin in acid medium using diperiodatonickelate as a reagent. The mechanism leading to luminescence is discussed by comparing the spectra of fluorescence and CL. Relative CL intensity is linear in the range from 8.0 ng mL?1 to 1.0 µg mL?1, the limit of detection is 2.5 ng mL?1 (3σ), and the relative standard deviation is 4.0% at 0.1 µg mL?1 of lincomycin (n?=?7). The method was successfully applied to the determination of lincomycin in injections, human urine, and in serum samples.  相似文献   

4.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

5.
A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL?1 in plasma and 0.32–20 μg mL?1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.  相似文献   

6.
《Analytical letters》2012,45(1):68-83
Abstract

A simple and reliable high-performance liquid chromatographic (HPLC) method was developed for the determination of belotecan in the plasma, urine, and bile samples of rats. Belotecan was analyzed with HPLC using a C18 column with fluorescence detector. A mixture of acetonitrile–0.1 M potassium phosphate buffer at pH 2.4 (25:75, v/v) and 0.2% trifluoroacetic acid was used as the mobile phase. The lower limits of quantitation (LOQ) were 5 ng mL?1 for the plasma and 5 µg mL?1 for the urine and bile samples. The method has been readily applied for the routine pharmacokinetic study of belotecan in small laboratory animals.  相似文献   

7.
《Analytical letters》2012,45(9):1663-1673
An on-line two-dimension microflow liquid chromatography was developed for better separation and analysis of the highly complex ingredients of medicinal preparation of traditional Chinese medicine Coptis Chinensis Franch. A two-valve switching system was utilized for two-dimension chromatography with strong cation exchange and reverse-phase capillary columns separation. The components were separated well by this system and yielded over 420 peaks. Under the optimal condition, 4 compounds were detected quantitatively. A good linear relationship was obtained from 0.2 µg mL?1 to 24 µg mL?1with detection limits (S/N = 3) ranging from 0.05 µg mL?1 to 0.2 µg mL?1for the compounds. We demonstrated that the method can be successfully applied to the analysis of a natural complex sample, with satisfactory results.  相似文献   

8.
Xu  Fan  Xu  Guili  Shang  Beicheng  Yu  Fang 《Chromatographia》2009,69(11):1421-1426

A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min−1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL−1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL−1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL−1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.

  相似文献   

9.
《Analytical letters》2012,45(6):1159-1169
Abstract

A new adsorptive cathodic differential pulse stripping voltammetry method for the direct determination of lorazepam at trace levels in pharmaceutical formulations and biological fluids is proposed. The procedure involves an adsorptive accumulation of lorazepam on a hanging mercury drop electrode (HMDE), followed by reduction of adsorbed lorazepam by voltammetric scan using differential pulse modulation. The optimum conditions for the analysis of lorazepam are pH=2 using Britton‐Robinson (B‐R) buffer, accumulation potential of ?0.2 V (vs. Ag/AgCl), and accumulation time of 40 sec. The peak current is proportional to the concentration of lorazepam, and a linear calibration graph is obtained at 0.05–1.15 µg mL?1. A relative standard deviation of 2.41% (n=3) was obtained, and the limit of detection was 0.019 µg mL?1. The capability of the method for the analysis of real samples was evaluated by determination of lorazepam in pharmaceutical preparations and biological (urine and plasma) fluids with satisfactory results.  相似文献   

10.
《Analytical letters》2012,45(4):751-761
Abstract

A partial least‐squares calibration (PLS) method has been developed for simultaneous quantitative determination of mepyramine maleate (MAM), lidocaine hydrochloride (LIH), and dexpanthenol (DPA) in pharmaceutical preparations. The resolution of these mixtures has been accomplished by using partial least‐squares (PLS‐2) regression analysis of electronic absorption spectral data without prior separation or derivatization. The experimental calibration matrix was constructed with 27 samples. The concentration ranges considered were 2, 3, 4 µg mL?1 for MAM, 2, 3, 4 µg mL?1 for LIH, and 8, 10, 12 µg mL?1 for DPA. The absorbances were recorded between 190 and 340 nm every 5 nm. The results show that PLS‐2 is a simple, rapid, and accurate method applied to the determination of these compounds in pharmaceuticals.  相似文献   

11.
《Analytical letters》2012,45(12):1999-2013
Abstract

A simple, rapid, selective, and sensitive method for the derivative spectrophotometric determination of Hg(II) and its simultaneous determination in the presence of Zn(II) using 2‐(5‐bromo‐2‐pyridylazo)‐5‐diethylaminophenol in the presence of cetylpyridinium chloride, a cationic surfactant, has been developed. The molar absorption coefficient and analytical sensitivity of the 1∶1 Hg(II) complex at 558 nm (λmax) are 5.78×104 L mol?1 cm?1 and 0.67 ng mL?1, respectively. The detection limit of Hg(II) is 1.40×10?2 ng mL?1, and Beer's law is valid in the concentration range 0.05–2.40 µg mL?1. Overlapping spectral profiles of Hg(II) and Zn(II) complexes in zero‐order mode interfere in their simultaneous determination. However, 0.10–2.00 µg mL?1 of Hg(II) and 0.065–0.650 µg mL?1 of Zn(II), when present together, can be simultaneously determined at zero cross point of the derivative spectrum, without any prior separation. The relative standard deviation for six replicate measurements of solutions containing 0.134 µg mL?1 of Hg(II) and 0.620 µg mL?1 of Zn(II) is 1.72 and 1.47%, respectively. The proposed method has successfully been evaluated for trace level simultaneous determination of Hg(II) and Zn(II) in environmental samples.  相似文献   

12.
A simple and reliable micellar electrokinetic capillary chromatography method has been presented for the simultaneous determination of betamethasone (BM) and its epimer dexamethasone (DM) in human urine and serum. A three level full factorial experimental design was employed to search for the optimum conditions. Rapid and baseline separation of BM and DM was obtained within 7 min with the optimum conditions of 30 mM borax buffer, 30 mM sodium dodecyl sulfate at pH 10.0, separation voltage at 18 kV, injection time 15 s at a height of 10 cm, using sodium sorbate as internal standard. The proposed method was validated with respect to stability, precision, linearity and accuracy. Good relationship between peak area ratio and analyte concentration was linear over 30–1,000 µg mL?1 for BM and DM with correlation coefficients ≥0.9993. Relative standard deviations of the method were all less than 4.50% in the intra-day and inter-day analysis. The developed method was applied to assay spiked human urine and serum samples containing both compounds with recoveries in the range of 97.5–100.5%.  相似文献   

13.
《Analytical letters》2012,45(7):1333-1347
Abstract

A multianalyte flow‐through sensor is proposed for the simultaneous determination of aspartame (AS) and acesulfame‐K (AK) in tabletop sweeteners. The procedure is based on the transient retention of AK in the ion exchanger Sephadex DEAE A‐25 placed in the flow‐through cell of a monochannel flow injection analysis (FIA) set‐up using pH 2.70 ortophosphoric acid/sodium dihydrogen phosphate buffer 0.06 M as carrier. In these conditions AS is very weakly retained, which makes it possible to measure the intrinsic ultraviolet (UV) absorbance of first AS and then AK after desorption by the carrier itself. The applicable concentration range, the detection limit, and the relative standard deviation were the following: for AS, from 10 to 100 µg mL?1; 5.65 µg mL?1; 3.4% (at 50 µg mL?1); and for AK, between 40 and 100 µg mL?1; 11.9 µg mL?1 and 1.61% (at 50 µg mL?1). The method was applied and validated satisfactorily for the determination of AS and AK blends in tabletop sweeteners. The results were compared against an HPLC reference method.  相似文献   

14.
《Analytical letters》2012,45(4):741-750
Abstract

A sensitive and fast flow‐injection (FI) spectrophotometric method for the determination of levofloxacin based on the formation of a colored product upon oxidation with N‐bromosuccinimide (NBS) in acidic medium is proposed. Optimization of chemical and FI variables has been made. Under the optimized conditions, the sampling rate was over 90 h?1, the calibration curve obtained was linear over the range 10–300 µg·mL?1, and the detection limit was 3 µg·mL?1. The proposed method was successfully applied to the determination of levofloxacin in pharmaceuticals and human urine samples. It was also found that the excipients in the commercial tablet preparation did not interfere with the assay. Results are precise (RSD<2.7%; n =10) and in agreement with those found by the reference high pressure liquid chromatography (HPLC) procedure.  相似文献   

15.
To evaluate the bioequivalence of nateglinide, a rapid and specific liquid chromatographic-electrospray ionization mass spectrometric method was developed and validated to determine nateglinide for human plasma samples. The analyte was detected using electrospray positive ionization mass spectrometry in the selected ion monitoring mode. Tinidazole was used as the internal standard. A good linear relationship obtained in the concentration ranged from 0.05 to 16 μg mL?1 (r 2 = 0.9993). Lower limit of quantification was 0.05 μg mL?1 using 100 μL of plasma sample. Intra- and inter-day relative standard deviations were 2.1–7.5 and 4.7–8.9%, respectively. Among the pharmacokinetic data obtained, T max was 2.09 ± 1.06 h for reference formulation and 2.40 ± 0.97 h for test formulation. C max was 4.17 ± 1.31 μg mL?1 for reference formulation and 4.37 ± 1.53 μg mL?1 for test formulation. The half-life (t ½) was 1.93 ± 0.44 h for reference formulation and 1.92 ± 0.29 h for test formulation. AUC0–10h was 13.67 ± 4.36 μg h mL?1 for reference formulation and 13.21 ± 4.09 μg h mL?1 for test formulation. This method was successfully applied to the pharmacokinetic study in human plasma samples.  相似文献   

16.
Wang  Huan  Chen  Yan  Zhou  Jia  Ma  Chen  Chen  Yuancheng  Liu  Xiaoquan 《Chromatographia》2008,67(11):875-881

A stereoselective liquid chromatographic method to determine the enantiomers of ornidazole in human plasma and urine has been developed and validated. After addition of the internal standard (naproxen), samples were acidified and extracted with diethyl ether. The separation was performed on a Chiralcel OB-H column, using hexane-ethanol- glacial acetic acid (94:6:0.08, v/v) as the mobile phase. The method was validated for specificity, linearity, sensitivity, precision, accuracy and stability. For each enantiomer of ornidazole, linear calibration curves were obtained over the concentration range of 0.16–20 μg mL−1 in plasma and 0.32–20 μg mL−1 in urine. For both enantiomers of ornidazole in plasma and urine, the coefficient of variation for precision were consistently less than 12% and accuracy were within ±14% in terms of relative error. Application of the method to a preliminary pharmacokinetic study showed that this validated method was qualified for the direct determination of ornidazole enantiomers in human plasma and urine.

  相似文献   

17.
A method for flow injection with chemiluminescence (CL) detection has been developed for the determination of proteins. It is based on the luminescence of the N-bromosuccinimide-fluorescein-protein system, where fluorescein is used as an energy transfer reagent in alkaline medium. The CL of the system is strongly enhanced by hexadecyl trimethyl ammonium bromide. Optimum conditions and possible mechanisms have been investigated. Under optimum experimental conditions, the linear range is from 0.4 to 40 µg·mL?1 for egg albumin, 0.2 to 20 µg·mL?1 for bovine serum albumin, and from 1 to 100 µg·mL?1 for bovine hemoglobin. The detection limits are 37, 62, and 240 ng·mL?1, respectively.  相似文献   

18.
《Analytical letters》2012,45(7):652-664
This work presents a new approach for fast and sensitive ultraviolet detection of 12 kinds of narcotic drugs on a microfluidic device by micellar electrokinetic capillary chromatography. Under optimal sampling and separation conditions the baseline separation of 12 drugs with resolution values ranging from 1.06 to 4.04 and separation efficiency up to 5.14 × 105 plates m?1 was achieved within 200 s. The widest linear range for detection of these analytes was 1.0 to 1500.0 µg mL?1. The correlation coefficients are higher than 0.9994. This system can successfully be applied to analyze narcotic drugs in human urine with the aid of liquid-liquid extraction of the samples. This method allows minimum detectable concentrations of these drugs down to 33 ng mL?1 at a signal-to-noise ratio of 3. This rapid method with high resolution and sensitivity, and little solvent consumption possessed potential application in screening of narcotic drugs in forensic analysis.  相似文献   

19.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

20.
《Analytical letters》2012,45(5):766-782
A combined homogeneous assay and colorimetric determination method using gold nanoparticles was developed for rapid determination of lead(II) in contaminated natural waters. The presence of lead(II) in the colloidal gold suspension causes a change in the absorbance of the suspension. An increase in the absorption property at 595 nm is accompanied by a change in the size of the gold nanoparticles. High concentrations of lead cause aggregation of the gold colloids. Colloidal gold nanoparticles were synthesized using tannic acid as the reducing agent; this reagent allowed selective determination of lead in 10 µL of water, with a detection limit of 310 ng mL?1 with an analysis time of 5 min. The coefficient of variation for lead(II) within the working range of the assay (520 ng mL?1–13 µg mL?1) varied from 1.3% to 9.2%. The limit of detection using this method with a sample volume of 50 µL was 60 ng mL?1. The coefficient of variation for lead over the working range of the determined concentrations (80 ng mL?1–25 µg mL?1) varied from 0.2% to 9.3%, while the values for the inter-day assay (n = 8) were less than 10%. The method was employed for the analysis of river, lake, marsh, and spring water; the recovery of lead was determined to be 72.5%–130% for 10 µL of water and 93.6%–114.7% for 50 µL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号