首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes development and validation of a high-performance liquid chromatographic method for simultaneous analysis of tramadol hydrochloride (TR) and aceclofenac (AC) in a tablet formulation. When the combination formulation was subjected to ICH-recommended stress conditions, adequate separation of TR, AC, and the degradation products formed was achieved on a C18 column with 65:35 (v/v) 0.01 M ammonium acetate buffer, pH 6.5—acetonitrile as mobile phase at a flow rate of 1 mL min?1. UV detection was performed at 270 nm. The method was validated for specificity, linearity, LOD and LOQ, precision, accuracy, and robustness. The method was specific against placebo interference and also during forced degradation. The linearity of the method was investigated in the concentration ranges 15–60 μg mL?1 (r = 0.9999) for TR and 40–160 μg mL?1 (r = 0.9999) for AC. Accuracy was between 98.87 and 99.32% for TR and between 98.81 and 99.49% for AC. Because degradation products were well separated from the parent compounds, the method was stability-indicating.  相似文献   

2.
A stability-indicating hydrophilic interaction liquid chromatography (HILIC) method has been developed and validated for the quantitative determination of Brimonidine tartrate (BT) formulated as an ophthalmic solution. Isocratic separation was achieved using an acetonitrile-buffer mixture (92:8, v/v) at pH 7.1 on an unmodified silica column (250 × 4.6 mm, 5 μm). The drug was subjected to oxidative, hydrolytic, photolytic and thermal stress conditions and complete separation was achieved for the parent compound and degradation products. The influence of acetonitrile, pH and ionic strength of the buffer was studied. Linearity range and recoveries for BT were 100–400 μg mL?1 and 100.12%, respectively. The method was validated for BT and indicated that the method was sufficiently sensitive with a limit of detection at 0.005 μg mL?1 and a limit of quantitation at 0.02 μg mL?1, respectively.  相似文献   

3.
A simple, isocratic, stability-indicating liquid chromatographic method for quantitative determination of curcumin was successfully developed. The chromatographic separations were achieved using a Hi-Q-Sil C18; 4.6 mm × 250 mm and 10 μm particle size column employing acetonitrile and acetate buffer (pH 3.0; 60: 40, v/v) as the mobile phase. The analyte was subjected to acidic, basic, oxidative, thermal and photo degradation. The method was validated with respect to linearity, precision, accuracy, limit of detection and limit of quantification. Curcumin was detected by UV-Vis detector at 425 nm whereas the degradation products were detected at 280 nm. The method was linear over the concentration range of 1–10 μg mL?1. The limit of detection was found to be 0.06 μg mL?1 and the quantification limit was 0.21 μg mL?1. Considerable degradation of the analyte was observed when it was subjected to alkaline conditions. Accuracy, evaluated as recovery, was in the range of 97–103%. Intra-day precision and intermediate precision showed relative standard deviations <1% and <2% respectively.  相似文献   

4.
A sensitive and rapid routine LC method was validated for measuring cefotaxime incorporated in three different pH-sensitive nanoparticles. The drug was chromatographed on a C18 reversed-phase column; the mobile phase used was 0.05 M aqueous ammonium acetate, acetonitrile and tetrahydrofuran (87:11:2, v/v) adjusted to pH 5.5 with acetic acid. The flow rate was 1 mL min?1 and cefotaxime was quantified at 254 nm, with a sensitivity range of 0.005 AUFS. The validated method was specific, linear (R 2 ≥ 0.999), precise and accurate in a concentration range of 0.2–50.0 μg mL?1. The method was rapid, selective and suitable for evaluation of cefotaxime in pH-sensitive Eudragit nanoparticles.  相似文献   

5.
A stability-indicating LC method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms. The chromatographic separation was achieved on an Inertsil ODS 3V, 150 × 4.6 mm, 5 μm, column. The mobile phase contained a mixture of 50 mM potassium dihydrogen phosphate buffer:acetonitrile:triethylamine:glacial acetic acid (55:45:0.2:0.2, v/v/v/v). This method allowed the determination of 2.85–9.14 mg mL?1 of ibuprofen and 0.54–1.73 mg mL?1 of diphenhydramine citrate, in a diluent consisting of pH 7.2, 50 mM potassium dihydrogen phosphate buffer:acetonitrile (40:60, v/v). The flow rate was 1.2 mL min?1 and the detection wavelength was 260 nm. The limit of detection for ibuprofen and diphenhydramine citrate was 1.72 and 0.54 μg mL?1 and the limit of quantification was 5.73 and 1.64 μg mL?1, respectively. This method was validated for accuracy, precision and linearity. The method was also found to be stability indicating.  相似文献   

6.
A forced degradation study on ropinirole hydrochloride in bulk and in its modified release tablets was conducted under the conditions of hydrolysis, oxidation and photolysis in order to develop an isocratic stability-indicating LC-UV method for quantification of the drug in tablets. An impurity peak in standard solution was found to increase under acidic and neutral hydrolytic conditions while another degradation product was formed under alkaline condition. The drug and its degradation products were optimally resolved on a Hypersil C18 column with mobile phase composed of diammonium hydrogen orthophosphate (0.05 M; pH 7.2), tetrahydrofuran and methanol (80:15:5% v/v) at a flow rate of 1.0 mL min?1 at 30 °C using 250 nm as detection wavelength. The method was linear in the range of 0.05–50 μg mL?1 drug concentrations. The %RSD of inter- and intra-day precision studies was <1. The system suitability parameters remained unaffected during quantification of the drug on three different LC systems. Excellent recoveries (101.59–102.28%) proved that the method was sufficiently accurate. The LOD and LOQ were found to be 0.012 and 0.040 μg mL?1, respectively. Degradation behaviour of the drug in both bulk and tablets was similar. The drug was very unstable to hydrolytic conditions but stable to oxidative and photolytic conditions. The method can be used for rapid and accurate quantification of ropinirole hydrochloride in tablets during stability testing. Based on chemical reactivity of ropinirole in different media, the degradation products were suspected to be different from the known impurities of the drug.  相似文献   

7.
A stability-indicating reversed-phase LC method for analysis of aceclofenac and paracetamol in tablets and in microsphere formulations has been developed and validated. The mobile phase was 80:20 (v/v) methanol–phosphate buffer (10 mM at pH 2.5 ± 0.02). UV detection was at 276 nm. The method was linear over the concentration ranges 16–24 and 80–120 μg mL?1 for aceclofenac and paracetamol, respectively, with recovery in the range 100.9–102.22%. The limits of detection and quantitation for ACF were 0.0369 and 0.1120 μg mL?1, respectively; those for PCM were 0.0631 and 0.1911 μg mL?1, respectively.  相似文献   

8.
A simple, rapid, and stability-indicating reversed-phase high-performance liquid chromatographic (LC) method for analysis for dutasteride has been successfully developed. Chromatography was performed on a 150 mm × 4.6 mm C18 column with acetonitrile–water 60:40 (v/v) as isocratic mobile phase at 1.0 mL min?1. Ultraviolet detection of dutasteride was at 210 nm. Its retention time was approximately 10 min and its peak was symmetrical. Response was a linear function of concentration over the range 0.2–1 μg mL?1 (R 2 = 0.997) and the limits of detection and quantitation were was 0.05 and 0.10 μg mL?1, respectively. The method was validated for linearity, precision, repeatability, sensitivity, and selectivity. Selectivity was validated by subjecting dutasteride stock solution to photolytic, acidic, basic, oxidative, and thermal degradation. The peaks from the degradation products did not interfere with that from dutasteride. The method was used to quantify dutasteride in pharmaceutical preparations.  相似文献   

9.
A simple and novel LC method has been developed for determination of isepamicin (ISP) in rat plasma, an aminoglycoside antibiotic agent. After protein precipitation and clean-up procedure to remove lipophilic contaminants, ISP is derivatized by pre-column with 9-fluorenylmethyl chloroformate for fluorescence detection. Chromatographic separations are achieved using a C18 column and mobile phase consisting of water and acetonitrile (68/32, v/v). Amikacin was used as an internal standard. The calibration curve was linear over a concentration range of 0.625–15 μg mL?1. The limit of quantification was 0.45 μg mL?1. The intra- and inter-day variabilities of ISP were both less than 5%. Both derivatives were stable for at least a week at ambient condition. This assay procedure should have useful application in therapeutic drug monitoring of ISP. The limit of detection was 0.10 μg mL?1. The specificity, assay linearity, low level assay linearity and assay repeatability were also investigated. The established method provides a reliable bioanalytical method to carry out isepamicin pharmacokinetics in rat plasma.  相似文献   

10.
A GC-MS method with HP-5MS capillary column was developed for the simultaneous determination of underivatized flunitrazepam, clonazepam, alprazolam, diazepam and ketamine from drinks by extraction with chloroform: isopropanol 1:1 (v/v). All linearity ranges were between 50 and 1,000 μg mL?1 for all compounds both in beer and in peach juice. Limit of detection was between 1.3 and 34.2 μg mL?1, limit of quantification was between 3.9 and 103.8 μg mL?1, the range of recoveries was 73.0 and 112.6% for all drugs in both beverages. The reported method was sensitive, rapid, and suitable for the analysis of the spiked drinks as evidence of sexual assault and robbery phenomena.  相似文献   

11.
A simple and rapid HPLC method using phenacetin (PHN) as internal standard has been developed for simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in the product compound paracetamol and chlorphenamine maleate granules. Separation and quantitation were achieved on a 250 mm × 4.6 mm, 5 μm particle, C18 column. The mobile phase was methanol 0.05 mol L?1 aqueous KH2PO4 solution, 45:55 (v/v), containing 0.1% triethylamine and adjusted to pH 3.6 by addition of phosphoric acid; the flow rate was 1.0 mL min?1. Detection of all compounds was by UV absorbance at 260 nm and elution of the analytes was achieved in less than 12 min. The linearity, accuracy, and precision of the method were acceptable to good over the concentration ranges 6.4–153.6 μg mL?1 for acetaminophen, 5.0–120.0 μg mL?1 for caffeine, and 9.6–230.4 μg mL?1 for chlorphenamine maleate.  相似文献   

12.
A rapid, selective and convenient liquid chromatography–mass spectrometric method for the simultaneous determination of paracetamol and caffeine in human plasma was developed and validated. Analytes and theophylline [internal standard (I.S.)] were extracted from plasma samples with diethyl ether-dichloromethane (3:2, v/v) and separated on a C18 column (150 × 4.6 mm ID, 5 μm particle size, 100 Å pore size). The mobile phase consisted of 0.2% formic acid–methanol (60:40, v/v). The assay was linear in the concentration range between 0.05 and 25 μg mL?1 for paracetamol and 10–5,000 ng mL?1 for caffeine, with the lower limit of quantification of 0.05 μg mL?1 and 10 ng mL?1, respectively. The intra- and inter-day precision for both drugs was less than 8.1%, and the accuracy was within ±6.5%. The single chromatographic analysis of plasma samples was achieved within 4.5 min. This validated method was successfully applied to study the pharmacokinetics of paracetamol and caffeine in human plasma.  相似文献   

13.
A new, rapid, selective, cheap and simple RP-LC method has been developed and validated for the simultaneous determination of clobetasol propionate and calcipotriol mixtures in bulk drugs (raw materials) and in a novel-fixed dose emulgel formulation. Separation was carried out using a NovaPak C18 column with methanol:water (74:26 v/v) as mobile phase for isocratic elution at a flow rate of 1.0 mL min?1. The column temperature was set at 25 °C. Calibration curves were established ranging between 0.5 and 20 μg mL?1 and 0.5 and 10 μg mL?1 for clobetasol propionate and calcipotriol, respectively. Limit of detection and limit of quantification values of the method was found as 0.16 and 0.48 μg mL?1 for clobetasol propionate and 0.10 and 0.30 μg mL?1 for calcipotriol, respectively. The method was validated in accordance with ICH guidelines and obtained results proved that the proposed method was precise, accurate, selective and sensitive for the simultaneous analysis of clobetasol propionate and calcipotriol. The proposed method can be easily applied for the simultaneous determination of clobetasol propionate and calcipotriol in prepared emulgel formulations. The obtained validation results showed that the RP-LC method is suitable for routine quantification of clobetasol propionate and calcipotriol in emulgel formulations with high precision and accuracy.  相似文献   

14.
A simple, selective and sensitive stability indicating LC method has been developed and validated for the determination of faropenem in bulk drug and pharmaceutical formulations in the presence of degradation products. The separation was achieved by using an isocratic mobile phase mixture of acetate buffer of pH 3.5 and methanol (65:35, v/v) and 250 mm × 4.6 mm I.D., 5 μm particle size SGE make Wakosil C-18 AR column at flow rate of 1.0 mL min?1 with detection at 305 nm. The retention time of faropenem is 6.63 min and was linear in the range of 5–75 μg mL?1 (r = 0.9999). The drug was subjected to stress conditions of hydrolysis, oxidation, photolysis and thermal degradation and was found to be unstable in all the stress conditions. The proposed method was successfully employed for quantification of faropenem in bulk drug and its pharmaceutical formulations.  相似文献   

15.
A stability-indicating HPLC method has been developed and subsequently validated for the simultaneous determination of domperidone and pantoprazole in commercial tablets. The proposed HPLC method utilizes Phenomenex® Gemini C18 column (150 mm × 4.6 mm i.d., 5 μm) and mobile phase consisting of methanol-acetonitrile-20 mM dipotassium hydrogen phosphate and phosphoric acid buffer pH 7.0 (20:33:47, v/v/v) at a flow rate of 1.19 mL min?1. Quantitation was achieved with UV detection at 285 nm based on peak area with linear calibration curves at concentration ranges 0.5–5.0 μg mL?1 for domperidone and 1.0–10 μg mL?1 for pantoprazole (R 2 > 0.999 for both drugs). The method was validated in terms of accuracy, precision, linearity, limits of detection, limits of quantitation and robustness. This method has been successively applied to pharmaceutical formulation and no interference from the tablet excipients was found. Domperidone, pantoprazole and their combination drug product were exposed to acid, base and neutral hydrolysis, oxidation, dry heat and photolytic stress conditions and the stressed samples were analyzed by the proposed method. As the proposed method could effectively separate the drug from its degradation products, it can be employed as stability-indicating method for the determination of instability of these drugs in bulk and commercial products.  相似文献   

16.
A simple and sensitive LC method for the quantitative determination of gemfibrozil in human plasma samples is described. Mometasone furoate was used as the internal standard. Plasma samples were pretreated by protein precipitation using methanol. Separation was performed at 40 °C on a YMC® ODS-A reverse phase column (5 μm particle size, 150 mm × 4.6 mm i.d.) using 0.2% (v/v) triethylamine in water (adjusting to pH 4.0 with phosphoric acid) and acetonitrile (45:55, v/v) as mobile phase which was delivered at 1.5 mL min?1. Ultraviolet detection was performed at 230 nm. The linear concentration range for gemfibrozil was 0.25–50 μg mL?1. The detection limit of this method was 0.1 μg mL?1. Intra- and inter-assay RSD ranged from 0.63 to 2.04% and 1.37 to 4.27%, respectively. The method was sensitive, simple and repeatable enough to be used in pharmacokinetic studies.  相似文献   

17.
The present research work discusses the development of a stability indicating reversed phase LC method for determination of ciprofloxacin hydrochloride as a bulk drug and from formulations. The mobile phase selected was water-acetonitrile-triethylamine 75:25:0.1 (v/v/v) adjusted to pH 4.0 with o-phosphoric acid. The calibration curve of the drug was linear in the range 0.25–15 μg mL?1. The method was accurate and precise with limits of detection and quantitation of 8.01 and 26.7 ng, respectively. Mean percent recovery was 100.71%. The method was used for analysis of ciprofloxacin hydrochloride from pharmaceutical formulations in the presence of its degradation products and commonly used excipients.  相似文献   

18.
The dicarbonyl compounds glyoxal, methylglyoxal, and dimethylglyoxal have been separated by capillary GC on a 30 m × 0.32 mm i.d. HP-5 column after precolumn derivatization with 2,3-diamino-2,3-dimethylbutane at pH 4. Chromatographic separation was complete in 6 min. Nitrogen was used as carrier gas at a flow rate of 2 mL min?1. Split injection was performed with a split ratio of 10:1 (v/v). The derivatives were monitored by flame-ionization detection, and linear calibration plots were obtained in the ranges 0.06–0.69, 0.05–1.01, and 0.07–1.33 μg mL?1 for glyoxal, methylglyoxal, and dimethylglyoxal, respectively; the respective detection limits were 20, 10, and 10 ng mL?1. Glyoxal and methylglyoxal were analyzed in serum and urine from diabetics and from healthy volunteers. Amounts of glyoxal and methylglyoxal in serum from diabetic patients were 0.19–0.33 and 0.20–0.29 μg mL?1, respectively, with respective relative standard deviations (RSD) of 0.8–1.0 and 0.8–1.1%. Amounts of glyoxal and methylglyoxal in serum from healthy volunteers were 0.05–0.08 and 0.04–0.10 μg mL?1, respectively, with respective RSD of 0.9–1.2 and 1.0–1.2%. Levels of glyoxal and methylglyoxal in urine from diabetic patients were 0.18–0.40 and 0.25–0.36 μg mL?1, respectively.  相似文献   

19.
A simple, rapid, and robust chiral HPLC method has been developed and validated for separation of the enantiomers of epinephrine, l-1-(3,4-dihydroxyphenyl)-2-(methylamino)ethanol, an antihypertensive drug, in the bulk drug. The enantiomers were resolved on an amylose-based stationary phase with n-hexane–2-propanol–methanol–trifluoroacetic acid–diethylamine 90:05:05:0.2:0.2 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. In the optimized method resolution between the enantiomers was not less than 3.0. The trifluoroacetic acid and diethylamine in the mobile phase were important for enhancing chromatographic efficiency and hence the resolution of the enantiomers. The method was extensively validated and proved to be robust. The calibration plot for the d enantiomer was highly linear over the concentration range 100–2,000 μg mL?1. The limits of detection and quantification for the d enantiomer were 0.15 and 0.45 μg mL?1, respectively. Recovery of the d enantiomer from bulk drug samples of epinephrine ranged between 99.5 and 101.5%. Epinephrine sample solution was stable for up to 48 h. The method was suitable for accurate quantitative determination of the d enantiomer in the bulk drug substance  相似文献   

20.
A sensitive and accurate LC method for the determination of AT13148 enantiomeric purity has been developed and validated. Baseline separation with a resolution higher than 1.8 was accomplished within 15 min using a Chiralpak AD-H column (250 × 4.6 mm; particle size 5 μm) and n-hexane: 2-propanol: diethylamine (85:15:0.1, v/v) as mobile phase at a flow rate of 1 mL min?1. Eluted analytes were monitored by UV absorption at 254 nm. The effects of mobile phase components, temperature and flow rate on enantiomeric selectivity and resolution of enantiomers were investigated. Calibration curves were plotted within the concentration range between 7 and 500 μg mL?1 (n = 11), and the recoveries between 98.24 and 100.99% were obtained, with relative standard deviation lower than 1.32%. LOD and LOQ for AT13148 were 2.46 and 7.38 μg mL?1 and for its enantiomer were 2.54 and 7.49 μg mL?1, respectively. It was demonstrated that the developed method was accurate, robust and sensitive for the determination of enantiomeric purity of AT13148, especially for the analysis of bulk samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号