首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a discharged supersonic jet of acetonitrile and carbon disulfide, we have for the first time observed an electronic transition of the NC(3)S radical using laser-induced fluorescence (LIF) spectroscopy. A progression originating from the C-S stretching mode of the upper electronic state appears in the excitation spectrum. Each band of the progression has a polyad structure due to anharmonic resonances with even overtones of bending modes. Rotationally resolved spectra have been observed by high-resolution laser scans, and the electronic transition is assigned to A 2Pii-X 2Pii. For the vibronic origin band, the position and the effective rotational constant of the upper level have been determined to be 21 553.874(1) and 0.046 689(4) cm(-1), respectively. The dispersed fluorescence spectrum from the zero vibrational level of A 2Pi3/2 has also been observed; its vibrational structure is similar to that of the LIF excitation spectrum, showing a prominent C-S stretching progression with polyad structures. The vibrational frequencies of the C-S stretching mode in the ground and excited electronic states are determined to be 550 and 520 cm(-1), respectively. Fluorescence decay profiles have been measured for several vibronic levels of the A state.  相似文献   

2.
The A (2)A(1)-X (2)B(1) electronic transition of the jet-cooled AsH(2) free radical has been studied by laser-induced fluorescence (LIF), wavelength-resolved emission, and fluorescence lifetime measurements. The radical was produced by a pulsed electric discharge through a mixture of arsine (AsH(3)) and high pressure argon at the exit of a pulsed valve. Nine vibronic bands were identified by LIF spectroscopy in the 505-400 nm region, including a long progression in the bending mode and two bands (1(0) (1) and 1(0) (1)2(0) (1)) involving the excited state As-H symmetric stretch. Single vibronic level emission spectra showed similar activity in the bending and symmetric stretching frequencies of the ground state. High-resolution spectra of the 0(0) (0) band exhibited large spin splittings and small, resolved arsenic hyperfine splittings, due to a substantial Fermi contact interaction in the excited state. The rotational constants obtained in the analysis gave effective molecular structures of r"(0)=1.5183(1) A, theta"(0)=90.75(1) degrees and r'(0)=1.4830(1) A, theta'(0)=123.10(2) degrees . The excited state fluorescence lifetimes vary dramatically with rovibronic state, from a single value of 1.4 micros to many with lifetimes less than 10 ns, behavior which the authors interpret as signaling the onset of a predissociative process near the zero-point level of the ground state.  相似文献   

3.
Building upon our recent observation of the gas-phase electronic spectrum of the iodomethyl cation (CH2I+), we report an extensive study of the electronic spectroscopy of CH2I+ and its deuterated isotopomers CHDI+ and CD2I+ using a combination of fluorescence excitation and single vibronic level (SVL) emission spectroscopies. The spectra were measured in the gas phase under jet-cooled conditions using a pulsed discharge source. Fluorescence excitation spectra reveal a dominant progression in nu3 (C-I stretch), the frequency of which is markedly smaller in the upper state. Rotational analysis shows that, while the A constant is similar in the two states, the excited state has significantly smaller B and C constants. These results indicate a lengthening of the C-I bond upon electronic excitation, consistent with calculations which show that this transition is analogous to the well-known pi-pi* transition in the isoelectronic substituted formaldehydes. SVL emission spectra show progressions involving four of the six vibrational modes; only the C-H(D) stretching modes remain unobserved. The vibrational parameters determined from a Dunham expansion fit of the ground state vibrational term energies are in excellent agreement with the predictions of density functional theory (DFT) calculations. A normal-mode analysis was completed to derive a harmonic force field for the ground state, where resonance delocalization of the positive charge leads to partial double bond character, H2C+-I <--> H2C=I+, giving rise to a C-I stretching frequency significantly larger than that of the iodomethyl radical.  相似文献   

4.
对CCl4/Ar混合气体脉冲直流高压放电产生CCl2自由基,在超声射流冷却下获得了CCl2 1B1- 1A1420~600 nm 波长范围的激光诱导荧光激发谱,系统标识了9个带系,81个振动带,其中56个振动带是我们新标识的.通过CCl2自由基的超声射流LIF谱与常温下压力为150 Pa 左右的LIF谱相结合分析,初步证实CCl2自由基电子态带源为17 255.04 cm-1.  相似文献   

5.
Single vibronic level dispersed fluorescence spectra of jet-cooled HGeCl and DGeCl have been recorded by laser excitation of selected bands of the A 1A"-X 1A' electronic transition. Twenty-six ground state vibrational levels of HGeCl and 42 of DGeCl were measured, assigned, and fitted to standard anharmonicity expressions, which allowed all the harmonic frequencies to be determined for both isotopomers. A normal coordinate least squares analysis obtained by fitting the harmonic frequencies yielded reliable values for five of the six force constants. The ground state effective rotational constants and force field data were combined to calculate average (rz) and approximate equilibrium (re z) structures, with re z(GeH)=1.586(1) A, re z(GeCl)=2.171(2) A, and the bond angle fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.9 degrees . Comparisons show that the derived bond lengths are consistent with those of the appropriate diatomic molecules in their ground electronic states and the bond angle is similar to that of germylene (GeH2). A Franck-Condon simulation of the vibrational intensities in the 0(0) (0) band emission spectrum of HGeCl using ab initio force field data shows good agreement with experiment, lending credence to the vibrational analysis of the observed spectra.  相似文献   

6.
Laser-induced fluorescence (LIF) and laser-excited dispersed fluorescence (LEDF) spectra of the cycloheptatrienyl (tropyl) radical C7H7 have been observed under supersonic jet-cooling conditions. Assignment of the LIF excitation spectrum yields detailed information about the A-state vibronic structure. The LEDF emission was collected by pumping different vibronic bands of the A 2E"3<--X 2E"2 electronic spectrum. Analysis of the LEDF spectra yields valuable information about the vibronic levels of the X 2E"2 state. The X- and A-state vibronic structures characterize the Jahn-Teller distortion of the respective potential energy surfaces. A thorough analysis reveals observable Jahn-Teller activity in three of the four e'3 modes for the X 2E"2 state and two of the three e'1 modes for the A 2E"3 state and provides values for their deperturbed vibrational frequencies as well as linear Jahn-Teller coupling constants. The molecular parameters characterizing the Jahn-Teller interaction in the X and A states of C7H7 are compared to theoretical results and to those previously obtained for C5H5 and C6H6+.  相似文献   

7.
The photodissociation dynamics of methyl nitrate, CH(3)ONO(2), has been investigated at 193 nm by examining the products from the primary dissociation channel, namely CH(3)O and NO(2). The CH(3)O (X (2)E) photoproducts were probed by laser-induced fluorescence (LIF) on the A (2)A(1)-X (2)E transition under both nascent and jet-cooled conditions. The 3 and 3 bands originating from the vibrationless and C-O stretch (nu(3)) levels, respectively, were characterized to obtain the internal energy distribution of the CH(3)O products. Only a small fraction of the CH(3)O products (< or =10%) were produced with one quantum of C-O stretch excitation as determined from the relative intensities of the bands in combination with transition probabilities derived from dispersed fluorescence measurements and/or calculated Franck-Condon factors. The CH(3)O products also had minimal rotational excitation: those produced in the ground vibrational state had a rotational temperature of 238 +/- 7 K, corresponding to less than 1% of the available energy. Products with C-O stretch excitation were found to have a higher rotational temperature, but still a small fraction of the total energy. Combining the CH(3)O internal energy findings with previous photofragment translational energy measurements [X. Yang, P. Felder and J. R. Huber, J. Phys. Chem., 1993, 97, 10903] indicates that most of the available energy is deposited in the NO(2) fragment. This is verified through dispersed fluorescence measurements which show that the NO(2) fragment is produced electronically excited with internal energies extending to the NO + O dissociation limit. Ab initio calculations confirm that the dominant initial excitation is strongly localized on the NO(2) moiety. The calculations are also used to reveal the forces that give rise to internal excitation of the CH(3)O fragment upon electronic excitation.  相似文献   

8.
Rotationally resolved spectra of several bands lying to the red of the origin of the A(1)A" - X (1)A' band system of chloromethylene (HCCl), were recorded by laser absorption spectroscopy in ambient temperature and jet-cooled samples. The radical was made by excimer laser photolysis of dibromochloromethane, diluted in inert gas, at 193 nm. The jet-cooled sample showed efficient rotational but less vibrational cooling. Analysis showed that the observed bands originate in the (upsilon(1),upsilon(2),upsilon(3)) = (010), (001), and (011) vibrational levels of the ground electronic state of the radical, while the upper-state levels involved were (000), (010), (001), and (011). Vibrational energies and rotational constants describing the rotational levels in the lower-state vibrational levels were determined by fitting to combination differences. The analysis also resulted in a reevaluation of the C-Cl stretching frequency in the excited state and we find E(001)' = 13 206.57 or 926.17 cm(-1) above the A(1)A" (000) rotationless level for HC(35)Cl. Scaled ab initio potential energy surfaces for the A and X states were used to compute the transition moment surface and thereby the relative intensities of different vibronic transitions, providing additional support for the assignments and permitting the prediction of the shorter wavelength spectrum. All the observed upper state levels showed some degree of perturbation in their rotational energy levels, particularly in K(a) = 1, presumably due to coupling with near-resonant vibrationally excited levels of the ground electronic state. Transitions originating in the low-lying a(3)A" were also predicted to occur in the same wavelength region, but could not be identified in the spectra.  相似文献   

9.
The previously unknown electronic spectrum of the H(2)PO free radical has been identified in the 407-337 nm region using a combination of laser-induced fluorescence and single vibronic level emission spectroscopy. High level ab initio predictions of the properties of the ground and first two excited doublet states were used to identify the spectral region in which to search for the electronic transition and were used to aid in the analysis of the data. The band system is assigned as the B?(2)A(')-X?(2)A(') electronic transition which involves promotion of an electron from the π to the π? molecular orbital. The excited state r(0) molecular structure was determined by rotational analysis of high resolution LIF spectra to be r(PO) = 1.6710(2) ?, r(PH) = 1.4280(6) ?, θ(HPO) = 105.68(7)°, θ(HPH) = 93.3(2)°, and the out-of-plane angle = 66.8(2)°. The structural changes on electronic excitation, which include substantial increases in the PO bond length and out-of-plane angle, are as expected based on molecular orbital theory and our previous studies of the isoelectronic H(2)AsO, Cl(2)PS, and F(2)PS free radicals.  相似文献   

10.
We report the first gas-phase observation of the electronic spectrum of a simple halocarbocation, CH2I+. The ion was generated rotationally cold (Trot approximately 20 K) using pulsed discharge methods and was detected via laser spectroscopy. The identity of the spectral carrier was confirmed by modeling the rotational contour observed in the excitation spectra and by comparison of ground state vibrational frequencies determined by single vibronic level emission spectroscopy with Density Functional Theory (DFT) predictions. The transition was assigned as 3A1 <-- X1A1. This initial detection of the electronic spectrum of a halocarbocation in the gas phase should open new avenues for study of the structure and reactivity of these important ions.  相似文献   

11.
We report new fluorescence excitation and single vibronic level emission spectra of the A (1)A(")<-->X (1)A(') system of CHCl. A total of 21 cold bands involving the pure bending levels 2(0) (n) with n=1-7 and combination bands 2(0) (n)3(0) (1)(n=4-7), 2(0) (n)3(0) (2)(n=4-6), 1(0) (1)2(0) (n)(n=5-7), 1(0) (1)2(0) (n)3(0) (1)(n=4-6), and 1(0) (1)2(0) (n)3(0) (2)(n=4) were observed in the 450-750 nm region; around half of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis typically yielded band origins and rotational constants for both isotopomers (CH(35)Cl,CH(37)Cl). The derived A (1)A(") vibrational intervals are combined with results of Chang and Sears to determine the excited state barrier to linearity [V(b)=1920(50) cm(-1)]. The A (1)A(") state C-H stretching frequency is determined here for the first time, in excellent agreement with ab initio predictions. Following our observation of new bands in this system, we obtained the single vibronic level (SVL) emission spectra which probe the vibrational structure of the X (1)A(') state up to approximately 9000 cm(-1) above the vibrationless level. The total number of X (1)A(') levels observed is around three times than that previously reported, and we observe five new a (3)A(") state levels, including all three fundamentals. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with the previous experimental and recent high level ab initio studies, are reported. Our data confirm the previous assignment of the a (3)A(") origin, and our value for T(00)(a-X)=2172(2) cm(-1) is in excellent agreement with theory. By exploiting SVL spectra from excited state levels with K(a) (')=1, we determine the effective rotational constant (A-B) of the triplet origin, also in good agreement with theory. Our results shed new light on the vibrational structure of the X (1)A('), A (1)A("), and a (3)A(") states of CHCl, and, more generally, spin-orbit coupling in the monohalocarbenes.  相似文献   

12.
Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the A (1)A(")-X (1)A(') electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonicity expressions, which allowed the harmonic frequencies to be determined for both isotopomers. In some cases, lack of a suitable range of emission data necessitated that some of the anharmonicity constants and vibrational frequencies be estimated from those of HGeClDGeCl and the corresponding silylenes (HSiX). Harmonic force fields were obtained for both molecules, although only four of the six force constants could be determined. The ground state effective rotational constants and force field data were combined to calculate average (r(z)) and approximate equilibrium (r(e) (z)) structures. For HGeBr r(e) (z)(GeH)=1.593(9) A, r(e) (z)(GeBr)=2.325(21) A, and the bond angle was fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.6 degrees . For HGeI we obtained r(e) (z)(GeH)=1.589(1) A, r(e) (z)(GeI)=2.525(5) A, and bond angle=93.2 degrees . Franck-Condon simulations of the emission spectra using ab initio Cartesian displacement coordinates reproduce the observed intensity distributions satisfactorily. The trends in structural parameters in the halogermylenes and halosilylenes can be readily understood based on the electronegativity of the halogen substituent.  相似文献   

13.
Ground and second excited electronic states of halogen and monomethyl substituted vinoxy radicals were studied by multireference configuration interaction (MRCI) calculation. Optimized geometries, rotational constants and vibrational frequencies of vinoxy and 1-fluorovinoxy showed good agreement with experimental values. Differences in calculated and observed B-X electronic transition energies were less than 0.1 eV and observed trends of blue shift upon increasing the number of substituted halogen atoms were reproduced by MRCI calculation. Observed fluorescence lifetimes of the vibrationless level in B state were in good agreement with calculated values. Rotational profiles of the 0-0 vibronic bands were successfully simulated with calculated rotational constants and transition dipole moments. Energy differences between planar and nonplanar optimized geometries in B state showed good correlation with the onset of fast nonradiative decay in B state, supporting the proposed mechanism of nonradiative decay via avoided crossings from B to A state which is followed by the decay to the ground state via conical intersections.  相似文献   

14.
The ultraviolet absorption spectra in the static vapor phase and the laser induced fluorescence spectra (both fluorescence excitation and single vibronic level fluorescence spectra) of jet-cooled 1,2,3,4-tetrahydronaphthalene have been used along with theoretical calculations to assign many of the vibronic levels in the S1(pi,pi*) state. These have been compared to the corresponding vibrational levels for the S0 ground state. Analysis of the upper states of the ring-twisting vibration nu(31) and three other low-frequency modes has allowed us to construct an energy map of the lowest vibrational quantum states for both S0 and S1. The molecule is highly twisted in both electronic states with high barriers to planarity, which are calculated to be 4811 cm(-1) for S0 and 5100 cm(-1) for S1. However, the experimental data show that the barrier should be lower in the S1 state.  相似文献   

15.
We have generated MgNC in supersonic free jet expansions and observed the laser induced fluorescence (LIF) of the A?(2)Π-X?(2)Σ(+) transition. We measured the LIF dispersed spectra from the single vibronic levels of the A?(2)Π electronic state of MgNC, following excitation of each ν(2) bending vibronic band observed, i.e., the κ series of the (0,v(2)('),0)-(0,0,0), v(2)(') = 0, 1, 2, 4, and 6 vibronic bands. In the vibrational structure in the dispersed fluorescence spectra measured, the long progression of the ν(2) bending mode in the X?(2)Σ(+) state is identified, e.g., up to v(2)(')=14 in the (0,6,0)-(0,v(2)('),0) spectrum. This enables us to derive the potential curve of the ν(2) bending mode in the X?(2)Σ(+) state. We used two kinds of models to obtain the potential curve; (I) the customary formula expressed in the polynomial series of the (v(2)(')+(d(2)/2)) term and (II) the internal rotation model. The potential curve derived from model (I) indicates the convergence of the bending vibrational levels at about 800 cm(-1) from the vibrationless level of MgNC, which may correspond to the barrier height of the isomerization reaction, MgNC ? MgCN, in the X?(2)Σ(+) state. Model (II) gives a simple picture for the isomerization reaction pathway with a barrier height of about 630 cm(-1) from the vibrationless level of the more stable species, MgNC. This shows that the v(2)(')=8 bending vibrational level of MgNC is already contaminated by the v(2)(')=2 bending vibrational level of the isomer, MgCN, and implies that the isomerization reaction begins at the v(2) (')=8 level. The bending potential surface and the isomerization reaction pathway, MgNC ? MgCN, in the X?(2)Σ(+) state are discussed by comparing the potential derived in this study with the surface obtained by quantum chemical calculation.  相似文献   

16.
The D(1)-D(0) transitions of diphenylmethyl (DPM) and chlorodiphenylmethyl (CDPM) radicals were studied by laser induced fluorescence (LIF) spectroscopy in a supersonic jet. Laser induced fluorescence excitation and dispersed fluorescence (DF) spectra were obtained for DPM and CDPM radicals produced by ArF excimer laser (193 nm) photolyses of their chlorides. With the aid of the density functional theory (DFT) calculation, vibronic bands are assigned by comparing the observed LIF excitation spectra of the jet-cooled radicals with the single vibronic level DF spectra. Low-frequency vibrations of 55 and 53 cm(-1) in the ground and excited states, respectively, are assigned to the symmetric phenyl torsional mode of the DPM radical. The geometries of DPM in the ground and excited states are discussed with regards to observed spectra and DFT calculations. Similarly for the CDPM radical, symmetric phenyl torsional and Ph-C-Ph bending modes are assigned and the halogen-substitution effect in equilibrium geometry is discussed.  相似文献   

17.
We report studies aimed at unraveling the complicated structure of the CCl 2 A (1)B 1 <-- X (1)A 1 system. We have remeasured the fluorescence excitation spectrum from approximately 17,500 to 24,000 cm (-1) and report the term energies and A rotational constants of many new bands for both major isotopologues (C (35)Cl 2, C (35)Cl (37)Cl). We fit the observed term energies to a polyad effective Hamiltonian model and demonstrate that a single resonance term accounts for much of the observed mixing, which begins approximately 1300 cm (-1) above the vibrationless level of the A (1)B 1 state. The derived A (1)B 1 vibrational parameters are in excellent agreement with ab initio predictions, and the mixing coefficients deduced from the polyad model fit are in close agreement with those derived from direct fits of single vibronic level (SVL) emission intensities. The approach to linearity and thus the Renner-Teller (RT) intersection is probed through the energy dependence of the A rotational constant and fluorescence lifetime measurements, which indicate a barrier height above the vibrationless level of the X (1)A 1 state of approximately 23,000-23,500 cm (-1), in excellent agreement with ab initio theory.  相似文献   

18.
Dispersed fluorescence (DF) spectra of 1-propoxy, 1-butoxy, 2-propoxy, and 2-butoxy radicals have been observed under supersonic jet cooling conditions by pumping different vibronic bands of the B-X laser induced fluorescence excitation spectrum. The DF spectra were recorded for both conformers of 1-propoxy, three conformers of the possible five of 1-butoxy, the one possible conformer of 2-propoxy, and two conformers of the possible three of 2-butoxy. Analysis of the spectra yields the energy separations of the vibrationless levels of the ground X and low-lying A electronic state as well as their vibrational frequencies. In all cases, the vibrational structure of the DF spectra is dominated by a CO stretch progression yielding the nuCO stretching frequency for the X state and in most cases for the A state. In addition to the experimental work, quantum chemical calculations were carried out to aid the assignment of the vibrational levels of the X state and for some conformers the A state as well. Geometry optimizations of the different conformers of the isomers were performed and their energy differences in the ground states were determined. The results of the calculation of the energy separations of the close-lying X and A states of the different conformations are provided for comparison with the experimental observations.  相似文献   

19.
Rhodium monofluoride has been observed and spectroscopically characterized. RhF molecules were produced under jet-cooled conditions in a laser vaporization molecular beam source by the reaction of a laser-vaporized rhodium plasma with SF(6) doped in helium, and studied with laser-induced fluorescence spectroscopy under both medium and high resolution. More than 25 bands have been observed in laser-induced fluorescence between 18,500 and 24,500 cm(-1) and five of these have been recorded at 200 MHz resolution. All bands of appreciable intensity have been rotationally analyzed. The ground electronic levels has Omega=2, which is attributed to an inverted (3)Pi state from the 2 delta(4)6 pi(3)12 sigma(1) electron configuration. The ground level rotational constants are B=0.272 45 cm(-1), D=1.035 x 10(-7) cm(-1). Very small ground level Lambda doublings are evident in the spectrum. Excited states having Omega=1, 2, and 3 have been identified. Dispersed fluorescence spectroscopy from 11 excited levels has been used to locate a large number of low-lying vibronic states within the energy range up to 8,000 cm(-1). A ground state vibrational interval of approximately 575 cm(-1) is suggested.  相似文献   

20.
We carried out laser induced fluorescence and resonance enhanced two-color two-photon ionization spectroscopy of jet-cooled 1-hydroxy-9,10-anthraquinone (1-HAQ). The 0-0 band transition to the lowest electronically excited state was found to be at 461.98 nm (21,646 cm(-1)). A well-resolved vibronic structure was observed up to 1100 cm(-1) above the 0-0 band, followed by a rather broad absorption band in the higher frequency region. Dispersed fluorescence spectra were also obtained. Single vibronic level emissions from the 0-0 band showed Stokes-shifted emission spectra. The peak at 2940 cm(-1) to the red of the origin in the emission spectra was assigned as the OH stretching vibration in the ground state, whose combination bands with the C=O bending and stretching vibrations were also seen in the emission spectra. In contrast to the excitation spectrum, no significant vibronic activity was found for low frequency fundamental vibrations of the ground state in the emission spectrum. The spectral features of the fluorescence excitation and emission spectra indicate that a significant change takes place in the intramolecular hydrogen bonding structure upon transition to the excited state, such as often seen in the excited state proton (or hydrogen) transfer. We suggest that the electronically excited state of interest has a double minimum potential of the 9,10-quinone and the 1,10-quinone forms, the latter of which, the proton-transferred form of 1-HAQ, is lower in energy. On the other hand, ab initio calculations at the B3LYP/6-31G(d,p) level predicted that the electronic ground state has a single minimum potential distorted along the reaction coordinate of tautomerization. The 9,10-quinone form of 1-HAQ is the lowest energy structure in the ground state, with the 1,10-quinone form lying approximately 5000 cm(-1) above it. The intramolecular hydrogen bond of the 9,10-quinone was found to be unusually strong, with an estimated bond energy of approximately 13 kcal/mol (approximately 4500 cm(-1)), probably due to the resonance-assisted nature of the hydrogen bonding involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号