首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li J  Sun J  Cui S  He Z 《Journal of chromatography. A》2006,1132(1-2):174-182
Linear solvation energy relationships (LSERs) amended by the introduction of a molecular electronic factor were employed to establish quantitative structure-retention relationships using immobilized artificial membrane (IAM) chromatography, in particular ionizable solutes. The chromatographic indices, log k(IAM), were determined by HPLC on an IAM.PC.DD2 column for 53 structurally diverse compounds, including neutral, acidic and basic compounds. Unlike neutral compounds, the IAM chromatographic retention of ionizable compounds was affected by their molecular charge state. When the mean net charge per molecule (delta) was introduced into the amended LSER as the sixth variable, the LSER regression coefficient was significantly improved for the test set including ionizable solutes. The delta coefficients of acidic and basic compounds were quite different indicating that the molecular electronic factor had a markedly different impact on the retention of acidic and basic compounds on IAM column. Ionization of acidic compounds containing a carboxylic group tended to impair their retention on IAM, while the ionization of basic compounds did not have such a marked effect. In addition, the extra-interaction with the polar head of phospholipids might cause a certain change in the retention of basic compounds. A comparison of calculated and experimental retention indices suggested that the semi-empirical LSER amended by the addition of a molecular electronic factor was able to reproduce adequately the experimental retention factors of the structurally diverse solutes investigated.  相似文献   

2.
The main oral drug absorption barriers are fluid cell membranes, and generally drugs are absorbed by a passive diffusion mechanism. On the other hand, the blood–brain barrier (BBB) is considered to be the main barrier to drug transport into the central nervous system (CNS). The BBB restricts the passive diffusion of many drugs from blood to brain. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography that uses micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug partitioning process into biological systems. In this study, relationships between the BMC retention data of a heterogeneous set of 12 drugs and their pharmacokinetics parameters (human oral drug absorption and BBB penetration ability) are studied and the predictive ability of the models is evaluated. Modeling of log k BMC of these compounds was established by multiple linear regression in two different concentrations (0.07 and 0.09 M) of sodium dodecyl sulfate (SDS). The results showed a fair correlation between human oral drug absorption and BMC retention data in 0.09 M SDS (R 2 = 0.864) and a good correlation between the blood–brain distribution coefficient and BMC retention data in 0.07 M of SDS (R 2 = 0.887). Application of the developed models to a prediction set demonstrated that the model is also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values are in good agreement with the experimental value.  相似文献   

3.
The linear solvation energy relationship (LSER) was applied to characterize biopartitioning micellar chromatography (BMC) system using monolithic column, and was utilized to compare the above system with other physicochemical and biological processes in this study. The solute volume and HB basicity had the maximum influence on the retention of the solutes, and an increase in the dipolarity/polarizability, HB basicity, HB acidity or excess molar refraction of the solutes decreased the retention. Principal component analysis of LSER coefficients showed that the system had certain similarity to drug biomembrane transport processes, such as blood–brain barrier penetration, transdermal and oral absorption. The quantitative retention–activity relationship (QRAR) of drug penetration across blood–brain barrier was established and its predictive capability for this biological process was evaluated. With the aid of the high flow rate, the monolithic column significantly facilitated the high-throughput analysis of large compounds’ bank without changing the mechanism of the retention in BMC and without impairing good predictive capability of the biological processes. Accordingly, the BMC system, together with monolithic column, allows for high-throughput profiling the biological processes, such as blood–brain barrier penetration.  相似文献   

4.
5.
The potential of biopartitioning micellar chromatography (BMC) for screening and analysis of traditional Chinese medicines (TCM) for permeable compounds has been investigated by chromatography of methanolic extracts of Ligusticum chuanxiong, as example. Six other ordinary TCM were also studied. Results showed that more than ten components of Ligusticum chuanxiong extract are significantly retained in BMC. According to relationships between retention in BMC and oral drug absorption, cell-membrane permeability, and blood–brain barrier permeability, the cell-membrane permeability and absorption properties of the permeable components of Ligusticum chuanxiong extract could be predicted from their retention in BMC. Effects on the chromatography of components of Ligusticum chuanxiong methanolic extracts of column temperature, mobile phase pH, and concentration of Brij 35 in the mobile phase are also discussed.  相似文献   

6.

The main oral drug absorption barriers are fluid cell membranes, and generally drugs are absorbed by a passive diffusion mechanism. On the other hand, the blood–brain barrier (BBB) is considered to be the main barrier to drug transport into the central nervous system (CNS). The BBB restricts the passive diffusion of many drugs from blood to brain. Biopartitioning micellar chromatography (BMC), a mode of micellar liquid chromatography that uses micellar mobile phases in adequate experimental conditions, can be useful as an in vitro system in mimicking the drug partitioning process into biological systems. In this study, relationships between the BMC retention data of a heterogeneous set of 12 drugs and their pharmacokinetics parameters (human oral drug absorption and BBB penetration ability) are studied and the predictive ability of the models is evaluated. Modeling of log k BMC of these compounds was established by multiple linear regression in two different concentrations (0.07 and 0.09 M) of sodium dodecyl sulfate (SDS). The results showed a fair correlation between human oral drug absorption and BMC retention data in 0.09 M SDS (R 2 = 0.864) and a good correlation between the blood–brain distribution coefficient and BMC retention data in 0.07 M of SDS (R 2 = 0.887). Application of the developed models to a prediction set demonstrated that the model is also reliable with good predictive accuracy. The external and internal validation results showed that the predicted values are in good agreement with the experimental value.

  相似文献   

7.
The retention behavior of 39 structurally diverse neutral, basic and acidic drugs was investigated on an HSA stationary phase using PBS buffer (pH 7.0) and acetonitrile or 2-propanol as organic modifiers. Extrapolated or directly measured log kw values as well as isocratic retention factors were correlated with plasma protein binding data taken from the literature. Retention factors determined in the presence of 10% acetonitrile led to high quality 1:1 correlation with apparent log KHSA values. The derived reference equation was successfully validated using a secondary set of 24 drugs. Further analysis of HSA retention into more fundamental properties revealed the involvement of anionic species in solute-stationary phase interactions, expressed by the negatively charged fraction, besides the partitioning mechanism which was reflected by lipophilicity. Protonation of basic drugs, although less important, may also influence retention, leading to reduced partitioning into the HSA surface as a net effect, while it seems to have no effect on HSA binding. The above results were further confirmed by linear solvation energy relationships (LSER).  相似文献   

8.
Chi-Lin Li 《Talanta》2009,79(3):851-1675
Linear solvation energy relationships (LSERs) have been recognized as a useful model for investigating the chemical forces behind the partition coefficients between vapor molecules and absorbents. This study is the first to determine the solvation properties of monolayer-protected gold nanoclusters (MPCs) with different surface ligands. The ratio of partition coefficients/MPC density (K/ρ) of 18 volatile organic compounds (VOCs) for four different MPCs obtained through quartz crystal microbalance (QCM) experiments were used for the LSER model calculations. LSER modeling results indicate that all MPC surfaces showed a statistically significant (p < 0.05) preference to hydrogen-bond acidic molecules. Through dipole-dipole attraction, 4-methoxythiophenol-capped MPCs can also interact with polar organics (s = 1.04). Showing a unique preference for the hydrogen bond basicity of vapors (b = 1.11), 2-benzothiazolethiol-capped MPCs provide evidence of an intra-molecular, proton-shift mechanism on surface of nano-gold.  相似文献   

9.
The usefulness of biopartitioning micellar chromatography (BMC) for predicting oral drug acute toxicity and apparent bioavailability was demonstrated. A logarithmic model (an LD50 model) and the second order polynomial models (apparent bioavailability model) have been obtained using the retention data of the selective calcium channel blockers to predict pharmacological properties of compounds. The use of BMC is simple, reproducible and can provide key information about the acute toxicity and transport properties of new compounds during the drug discovery process.  相似文献   

10.
Linear solvation energy relationships (LSER model) was tested for the characterization of hypercrosslinked polystyrene (HCPS) stationary phases for high-performance liquid chromatography (HPLC). Analysis of LSER coefficients showed that hydrophobic and electrostatic interactions are the major contributors to retention on HCPS. Fluorine atoms in HCPS increase the fractions of both hydrophobic and electrostatic interactions in the retention. The utility of fluorinated HCPS in the separation of di-n-phthalate mixtures by reversed-phase liquid chromatography was demonstrated.  相似文献   

11.
12.
The reuptake blockade of biogenic amines by antidepressants is related not only to their therapeutics effects, but also to their side effects and potential drug-drug interactions. As an alternative to classical quantitative structure-activity relationships studies, in this work we propose different quantitative retention-activity relationships (QRAR) models that are able to describe the monoamine reuptake inhibition by antidepressants. The retention of compounds is measured using a biopartitioning micellar chromatography (BMC) system that can simulate the same hydrophobic, electronic and steric molecular interactions as those that condition drug activity. Since all the compounds considered in this work are structurally related because all of them share the same molecular features as the corresponding basic pharmacophore, the results obtained show that there is a retention range in which antidepressants present the highest monoamine reuptake inhibitor potency.  相似文献   

13.
A simple algorithm is proposed for prediction of linear retention indices, RI, of organic compounds with different structures. The algorithm is based on the hypothesis that any structural moiety of a molecule contributes to gas chromatographic retention to a different extent, depending on its molecular environment. For a given moiety the mean structural increment (MSI) is calculated from the difference between the retention indices of two molecules, one containing it and one not, in different compound families. The mean of these values is the MSI for the corresponding moiety. The correlation between predicted and experimental values affords r 2 = 0.992 and the mean relative error is 1.65% for n = 92 compounds.  相似文献   

14.
Organoclays are usually used as sorbents to reduce the spread of organic compounds and to remove them at contaminated sites. The sorption equilibrium and the mechanisms of volatile organic compounds (VOCs) on organoclays under different humidities are helpful for developing efficient organoclays and for predicting the fate of VOCs in the environment. In this study, the organoclay was synthesized through exchanging inorganic cations by hexadecyltrimethyl ammonium (HDTMA) into montmorillonite, resulting in 12?% of organic content. The surface area of organoclay was smaller than the unmodified clay due to the incorporation of organic cations into the interlayer. Both adsorption on organoclay surface and partition into the incorporated HDTMA in organoclay played roles on the sorption process. Compared the sorption coefficients in montmorillonite and different modified clays, the incorporated organic cations overcame the inhibition effect of hydrophilic surface of clay on the sorption process of hydrophobic organic compounds from water. The sorption coefficients of VOC vapors on organoclay were further characterized using a linear solvation energy relationship (LSER). The fitted LSER equations were obtained by a multiple regression of the sorption coefficients of 22 probe chemicals against their solvation parameters. The coefficients of the five-parameter LSER equations showed that high HDTMA-content montmorillonite interacts with VOC molecules mainly through dispersion, partly through dipolarity/polarizability and hydrogen-bonds as well as with negative π-/n-electron pair interaction. The interaction analysis by LSERs suggests that the potential predominant factors governing the sorption of VOCs are dispersion interactions under all tested humidity conditions, similar with the lower level modified clay. The derived LSER equations successfully fit the sorption coefficients of VOCs on organoclay under different humidity conditions. It is helpful to design better toxic vapor removal strategy and evaluate the fate of organic contaminants in the environment.  相似文献   

15.
16.
17.
In this study, we show that the addition of n-octanol to the mobile phase improves the chromatographic determination of lipophilicity parameters of xenobiotics (neutral solutes, acidic, neutral and basic drugs) on a Phenomenex Gemini C18 column. The Gemini C18 column is a new generation hybrid silica-based column with an extended pH range capability. The wide pH range (2-12) afforded the examination of basic drugs and acidic drugs in their neutral form. Extrapolated retention factor values, [Formula: see text] , obtained on the above column with the n-octanol-modified mobile phase were very well correlated (1:1 correlation) with literature values of logP (logarithm of the partition coefficient in n-octanol/water) of neutral compounds and neutral drugs (69). In addition, we found good linear correlations between measured [Formula: see text] values and calculated values of the logarithm of the distribution coefficient at pH 7.0 (logD(7.0)) for ionized acidic and basic drugs (r(2)=0.95). The Gemini C18 phase was characterized using the linear solvation energy relationship (LSER) model of Abraham. The LSER system constants for the column were compared to the LSER constants of n-octanol/water extraction system using the Tanaka radar plots. The comparison shows that the two methods are nearly equivalent.  相似文献   

18.
In reversed-phase liquid chromatography (RPLC), the comparison of experimental results obtained from different columns is a complex problem. A correspondence factor analysis (CFA) and a linear solvation energy relationship (LSER) were applied on retention data to characterize second-order intermolecular interactions responsible for retention on a set of RPLC columns. Seven octadecyl-C18 columns with different packing materials are obtained from different manufacturers and one octyl-C8 column. The retention data were determined under isocratic conditions using a methanol–water (65:35, v/v) mobile phase. The chromatographic retention indices based on alkan-2-ones and alkyl aryl ketones retention index scales are calculated using a multiparametric least-squares regressions iterative method. The CFA and LSER results permitted to highlight that the retention indices were appropriate for studying the second-order retention mechanisms on the eight chromatographic systems investigated and exhibited the best reproducibility. Although many earlier studies have reported the use of chemometric methods to characterize chemical factors affecting retention in RPLC using retention factors as retention parameters, this is the first study based on retention indices.  相似文献   

19.
A new liquid chromatographic system was developed to measure protein-drug binding affinity indirectly without albumin and was evaluated using log nK values of drugs measured by a modified Hummel-Dreyer method using purified human serum albumin. The retention factors of acidic and basic drugs were measured by reversed-phase and ion-exchange liquid chromatography in sodium phosphate buffer, pH 7.40, containing 50 vol.% methanol at 37 °C. The bonded phases were pentyl, guanidino and carboxyl phases. The combined retention factors were correlated with the log nK values measured by a modified Hummel-Dreyer method because glycosylation of human serum albumin did not significantly affect log nK value. The correlation coefficients were 0.949 (n=7) for acidic drugs and 0.978 (n=5) for basic drugs. The log nK values of 26 acidic and 18 basic drugs were predicted from their retention factors measured by reversed-phase and ion-exchange liquid chromatography.  相似文献   

20.
Linda Didaoui  A. Touabet 《Chromatographia》2010,72(11-12):1055-1060
In reversed phase liquid chromatography (RP-LC), a multiparametric non-linear least-squares regression iterative method has been evaluated at different column temperatures (ranging from 30 to 60 °C in 5 °C steps) for calculating the retention time of the unretained compound t M and the regression parameter (slope b), based on the use of alkan-2-ones, alkyl aryl ketones and 1-nitroalkanes homologous series on two different columns: Spherisorb-ODS2 C18 and Nucleosil C8. The calculated parameters t M and b by the multiparametric method (MP) were compared with those obtained by using the iterative method of Guardino’s. The influence of the number of subsets of homologues used for the calculation of t M and b values was investigated. The retention indices (RI) of some neutral and acidic explosives and related compounds (nitramines, nitroaromatics, aminonitroaromatics and nitrophenols) based on the alkan-2-ones retention index standards have been determined and compared at various temperatures by the MP method. Good agreement was observed between retention data calculated by the MP and GU methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号