首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
Neuhof  Torsten  Ganzauer  Natalie  Koch  Matthias  Nehls  Irene 《Chromatographia》2009,69(11):1457-1462

Liquid chromatography coupled with tandem mass spectrometric detection has gained more importance for mycotoxin determination in recent years. In addition to instrumental improvements, the development of LC-MS-MS has also been a consequence of the availability of stable isotope internal standards, e.g., 13C-labelled mycotoxins. Thus, the LC-ESI-MS-MS method using a 13C15-deoxynivalenol internal standard as a state-of-the-art technique was selected as a reference procedure for an in-house method comparison study of the determination of deoxynivalenol (DON) in wheat materials. Alternative methods include LC-diode array detection, which is a frequently used routine procedure for DON-analysis, and gas chromatography after trimethylsilylation. For GC application, an electron capture detector and a negative chemical ionisation mass spectrometry detector were used, which have both been well described in the literature. The method comparison was conducted using t test statistics. Additionally, this study also calculates important method performance characteristics, including accuracy, linearity, limit of detection, limit of quantification, recovery, and variation coefficient. Furthermore, this is the first report of a GC-MS method for the determination of DON using a fully carbon-labelled 13C15-DON as an IS. The GC-MS using 13C15-DON as an IS has produced comparable results to the 13C-IS-LC-MS-MS reference method with a similar sensitivity. ECD detection was slightly less sensitive, but is also suited for DON analysis in wheat. Due to the high LOQ, the LC-DAD method seems highly applicable to the measurement of highly contaminated samples.

  相似文献   

2.
Very often, the accuracy of quantitative analytical methods for the determination of mycotoxins by liquid chromatography (LC)-mass spectrometry (MS) and LC-MS/MS is limited by matrix effects during the ionization process in the MS source. Stable isotope labeled standards are best suited to correct for matrix effects and to improve both the trueness and the precision of analytical methods employing LC-MS and LC-MS/MS. This paper describes the successful use of fully 13C isotope labeled deoxynivalenol [(13C15)DON] as an internal standard (IS) for the accurate determination of DON in maize and wheat by LC electrospray ionization MS/MS. To show the full potential of (13C15)DON as IS, maize and wheat extracts were analyzed without further cleanup. Subsequent to calibration for the LC-MS end determination, DON was quantified in matrix reference materials (wheat and maize). Without consideration of the IS, apparent recoveries of DON were 29±6% (n=7) for wheat and 37±5% (n=7) for maize. However, the determination of DON in the reference materials yielded 95±3% (wheat) and 99±3% (maize) when (13C15)DON was used as an IS for data evaluation.  相似文献   

3.
We describe a sensitive electrochemical immunosensor for the detection of deoxynivalenol (DON). It is based on a glassy carbon electrode modified with a composite made from fullerene (C60), ferrocene and the ionic liquid. The components were immobilized on the surface of the electrode using chitosan cross-linked with epichlorohydrin. Then, the antibody to DON was covalently conjugated to the surface which then was blocked with serum albumin. The performance of the immunosensor was investigated by cyclic voltammetry and electrochemical impedance spectroscopy. It offers good repeatability (RSD?=?1.2%), selectivity, a stability of more than 180?days, an impedimetric response to DON in the range of 1?pgmL?1 to 0.3?ng?mL?1, and a detection limit (at S/N?=?3) of 0.3?pgmL?1. The limit of detection is better than that of GC, HPLC, GC-MS, HPLC-MS and LC-MS-MS. The effects of omitting C60 or the ionic liquid were also examined. The results indicate that the sensitivity of the biosensor is 2-fold better if C60 and ionic liquids are used. This demonstrates that C60 facilitates electron transfer on the surface of the modified electrode due to its unique electrochemical properties, while the ionic liquid provides a biocompatible microenvironment for the antibody. This results in increased sensitivity and stability. The method was satisfactorily applied to the determination of DON in food samples.
Figure
Fullerene, ferrocene, chitosan and ionic liquid offer remarkable synergistic contributions towards improve electrochemical performance of DON sensor. This results that novel sensor exhibits a good repeatability (RSD=1.2%), selectivity, very low detection limit (S/N=3) of 0.0003 ng mL-1, an impedimetric response to DON in the range from 0.001 ng mL-1 to 0.3 ng mL-1 and a stability of more than 180 days. Cyclic voltammograms of, Ab/C60-FC-IL-GCE a and Ab/FC-IL-GCE b  相似文献   

4.
A fast, sensitive and specific method for routine determination of residues from Chlormequat (CAS no. 7003-89-6) is described. The method is based on a simple clean-up using an SPE-C18 cartridge, high-performance liquid chromatography on a standard C18 column (Spherisorb S5 ODS1) and specific detection and quantification by electrospray mass spectrometry (LC-MS/MS). 13C-Chlormequat was synthesised for use as internal standard. Samples were extracted with methanol – water – acetic acid. Internal standard and ammonium acetate were added before C18-cartridge clean up and residues eluted with methanol – water – acetic acid, containing 50 mM ammonium acetate. Chromatographic separation was achieved using a solvent composed of acetonitrile – methanol – water – acetic acid (53:21:25:1 by volume), containing 50 mM ammonium acetate. Electrospray ionisation mass spectrometry was employed using m/z 58 (daughter ion of the Chlormequat quaternary ammonium ion, m/z 122) and m/z 61 (daughter ion of the 13C-Chlormequat quaternary ammonium ion, m/z 125) for quantification. The LC analysis time was 15 min and the limit of detection of the analytical method was 9 μg/kg. The performance of the method was demonstrated analysing grain material from an inter-comparison study. In Denmark the primary use of Chlormequat chloride (CCC, cycocel, or chlorocholin chloride, CAS no. 999-81-5) is for winter cereals and 11 such winter wheat samples from the Danish National Pesticide Survey were analysed. Residue contents were from below 0.01 up to 0.45 mg/kg, and thus below the EU maximum residue level of 2.0 mg/kg for wheat.  相似文献   

5.
Abstract

A facile and efficient method is described for the determination of trace quantities of triazine herbicides, terbutryn, prometryn and ametryn in water. The procedure involved preconcentration of water samples by sorption on chromatographic grade silica gel particles with chemically modified surface, being covalently bonded with a nonofunctional C8H17 group. This was followed by solvent desorption with 2-propanol. The determinative step was achieved by capillary gas chromatography on Supelcowax-10 fused silica column using a nitrogen-phosphorus detector. The limit of detection was 0.1 μg-10 μgL?1.  相似文献   

6.
A rapid and specific reversed-phase high performance liquid chromatography (RP-HPLC) method for the determination of palmatine in rabbit plasma has been developed and validated. The chromatographic separation was performed on a C18 column at 40 °C. The mobile phase, delivered at 1.0 mL min?1, consisted of acetonitrile/phosphate buffer (pH 3.0) 40:60 (v/v). The detection wavelength was set at 345 nm. Palmatine and internal standard (IS) berberine were extracted from plasma by solid-phase extraction using C18 cartridges. Linearity was confirmed in the concentration range of 0.01 to 5 μg mL?1, the inter-day and intra-day RSDs were within 10.0, the recoveries of palmatine ranged from 93.1 to 110.3, and the limit of detection (LOD, S/N > 3) was 0.002 μg mL?1. The method is applicable to the determination of palmatine in rabbit plasma after intravenous administration of palmatine.  相似文献   

7.
Quenchbody (Q-body) is a novel fluorescent biosensor based on the antigen-dependent removal of a quenching effect on a fluorophore attached to antibody domains. In order to develop a method using Q-body for the quantitative determination of deoxynivalenol (DON), a trichothecene mycotoxin produced by some Fusarium species, anti-DON Q-body was synthesized from the sequence information of a monoclonal antibody specific to DON. When the purified anti-DON Q-body was mixed with DON, a dose-dependent increase in the fluorescence intensity was observed and the detection range was between 0.0003 and 3 mg L−1. The coefficients of variation were 7.9% at 0.003 mg L−1, 5.0% at 0.03 mg L−1 and 13.7% at 0.3 mg L−1, respectively. The limit of detection was 0.006 mg L−1 for DON in wheat. The Q-body showed an antigen-dependent fluorescence enhancement even in the presence of wheat extracts. To validate the analytical method using Q-body, a spike-and-recovery experiment was performed using four spiked wheat samples. The recoveries were in the range of 94.9–100.2%. The concentrations of DON in twenty-one naturally contaminated wheat samples were quantitated by the Q-body method, LC-MS/MS and an immunochromatographic assay kit. The LC-MS/MS analysis showed that the levels of DON contamination in the samples were between 0.001 and 2.68 mg kg−1. The concentrations of DON quantitated by LC-MS/MS were more strongly correlated with those using the Q-body method (R2 = 0.9760) than the immunochromatographic assay kit (R2 = 0.8824). These data indicate that the Q-body system for the determination of DON in wheat samples was successfully developed and Q-body is expected to have a range of applications in the field of food safety.  相似文献   

8.
A fast, sensitive and specific method for routine determination of residues from Chlormequat (CAS no. 7003-89-6) is described. The method is based on a simple clean-up using an SPE-C18 cartridge, high-performance liquid chromatography on a standard C18 column (Spherisorb S5 ODS1) and specific detection and quantification by electrospray mass spectrometry (LC-MS/MS). 13C-Chlormequat was synthesised for use as internal standard. Samples were extracted with methanol – water – acetic acid. Internal standard and ammonium acetate were added before C18-cartridge clean up and residues eluted with methanol – water – acetic acid, containing 50 mM ammonium acetate. Chromatographic separation was achieved using a solvent composed of acetonitrile – methanol – water – acetic acid (53:21:25:1 by volume), containing 50 mM ammonium acetate. Electrospray ionisation mass spectrometry was employed using m/z 58 (daughter ion of the Chlormequat quaternary ammonium ion, m/z 122) and m/z 61 (daughter ion of the 13C-Chlormequat quaternary ammonium ion, m/z 125) for quantification. The LC analysis time was 15 min and the limit of detection of the analytical method was 9 μg/kg. The performance of the method was demonstrated analysing grain material from an inter-comparison study. In Denmark the primary use of Chlormequat chloride (CCC, cycocel, or chlorocholin chloride, CAS no. 999-81-5) is for winter cereals and 11 such winter wheat samples from the Danish National Pesticide Survey were analysed. Residue contents were from below 0.01 up to 0.45 mg/kg, and thus below the EU maximum residue level of 2.0 mg/kg for wheat. Received: 22 December 1997 / Revised: 29 January 1998 / Accepted: 31 January 1998  相似文献   

9.
A surface plasmon resonance (SPR) immunoassay using a monoclonal antibody was developed to measure nivalenol (NIV) and deoxynivalenol (DON) contamination in wheat. A highly sensitive and stable DON-immobilized sensor chip was prepared, and an SPR detection procedure was developed. The competitive inhibition assay used a monoclonal antibody that cross-reacts with NIV and DON. The half maximal inhibitory concentration (IC50) values of the SPR assay were 28.8 and 14.9 ng mL−1 for NIV and DON, respectively. The combined responses of NIV and DON in wheat were obtained using a simultaneous detection assay in a one-step cleanup procedure. NIV and DON were separated using a commercial DON-specific immunoaffinity column (IAC) and their responses were obtained using an independent detection assay. Spiked tests using these toxins revealed that recoveries were in the range 91.5-107% with good relative standard deviations (RSDs) (0.40-4.1%) and that detection limits were 0.1 and 0.05 mg kg−1 for NIV and DON, respectively. The independent detection using IAC showed detection limits of 0.2 and 0.1 mg kg−1 for NIV and DON, respectively. SPR analysis results were correlated with those obtained using a conventional LC/MS/MS method for wheat co-contaminated with NIV and DON. These results suggested that the developed SPR assay is a practical method to rapidly screen the NIV and DON co-contamination of wheat and one of a very few immunoassays to detect NIV directly.  相似文献   

10.
A microwave-powered chemical reaction interface has been installed in a Hewlett-Packard gas chromatograph-mass spectrometer (GC-MS) system (5890 IT gas chromatograph-S971 mass-selective detector). The technical details and optimization strategies are discussed. The evaluation of this new setup is presented, showing detection limits of 1 ng of 13C-, 15N-, and Cl-containing compounds with signal-to-noise ratios greater than or egual to 3. Selective detection was evaluated with a urine sample from a dog dosed with 15N3-midazolam that had been previously analyzed by using a differentially pumped research-level quadrupole mass spectrometer. The results show that the detection of 15N and Cl remains highly selective and the mass-selective detector gives comparable sensitivity to the larger instrument when the latter is operating over a conventional mass range. The capability for chemical reaction interface mass spectrometry can be easily accomplished with an inexpensive GC-MS system.  相似文献   

11.
A speedy and selective ultra‐HPLC‐MS/MS method for simultaneous determination of deoxynivalenol (DON), 3‐acetyldeoxynivalenol (3‐ADON), 15‐ADON, nivalenol and fusarenon X in traditional Chinese medicines (TCMs) was developed. The method was based on one‐step sample cleanup using reliable homemade cleanup cartridges. A linear gradient mobile‐phase system, consisting of water containing 0.2% aqueous ammonia and acetonitrile/methanol (90:10, v/v) at a flow rate of 0.4 mL/min, and an Acquity UPLC HSS T3 column (100 mm×2.1 mm, 1.8 μm) were employed to obtain the best resolution of the target analytes. [13C15]–DON was used as the internal standard to accomplish as accurate as possible quantitation. The established method was further validated by determining the linearity (R2≥0.9990), sensitivity (LOQ, 0.29–0.99 μg/kg), recovery (88.5–119.5%) and precision (RSD≤15.8%). It was shown to be a suitable method for simultaneous determination of DON, 3‐ADON, 15‐ADON, nivalenol and fusarenon X in various TCM matrices. The utility and practical impact of the method was demonstrated using different TCM samples.  相似文献   

12.
A simple and accurate method to quantify the mycotoxin deoxynivalenol (DON) in wheat is described. The method uses immunoaffinity chromatography for DON isolation and liquid chromatography (LC) for toxin detection and quantification. Wheat samples are extracted in water, filtered twice and applied to an immunoaffinity column. Following a water wash, DON is eluted from the column with methanol and injected onto an LC system with a UV detector for quantification. Test performance was evaluated in terms of antibody specificity, limit of detection, percentage recovery, precision, column capacity, assay linearity and comparison with the GC-electron-capture detection (ECD) method of Tacke and Casper. Specificity of the immunoaffinity column cleanup procedure was confirmed with only DON (>80%) and its 15-C derivatives (40-50%) being recognized by the antibody while 3-C DON derivatives, nivalenol, T-2 and fusarenon-X did not bind. The limit of detection is at least 0.10 microg/g. Percentage recovery for the entire assay range averages 90% with an average relative standard deviation of 8.3%. Naturally contaminated samples showed comparable precision. Column capacity was determined to be 3.3 microg. The assay showed a high degree of linearity (r2=0.999) and an optimum assay range of 0.10 to 10.0 microg/g. Comparative analysis of 28 naturally or artificially contaminated wheat samples using DONtest-HPLC and the GC-ECD method of Tacke and Casper showed that DONtest-HPLC is a statistically significant predictor of the GC-ECD method (r2=0.982).  相似文献   

13.
Two headspace-methods were developed for the detection and determination of traces of CFC/HCFC in polymeric foams. These methods consist of capillary gas chromatography using an electron-capture detector (ECD method) or an ion trap detector combined with preconcentration on a cold trap (ITD method). Different CFC/HCFC such as R115, R22, R12, R142b, R114, R11, R141b and R113 were investigated in polyethylene and flexible polyurethane foams. Conditions for sample preparation (e.g. thermostating time and temperature) were optimized. Determination of the detection limits and quantitation of the amount of CFC/HCFC released from the foam were performed with gas standards prepared with the help of mass flow controllers. Quantitative analyses of the total amount of CFC/HCFC present in the foam were performed using multiple headspace extraction. Longterm studies were performed on the rate of release of some CFC/HCFC from the foams. Additionally a method for distinguishing a CFC/HCFC-contaminated foam from an old CFC/HCFC-blown foam is presented. Both methods can be used individually; however, best results are achieved by using the ECD method for screening and the ITD method for confirmation. This combination was used for routine analysis enforcing legal restrictions on the use of CFC/HCFC in foams.Abbreviations CFC chlorofluorocarbon - HCFC partially halogenated chlorofluorohydrocarbon - PUR polyurethane - PS polystyrene - PE polyethylene - MHE multiple headspace extraction - ECD electron capture detector - ITD ion trap detector - FID flame ionization detector - TCD thermal conductivity detector - MS mass spectrometry - WCOT wall coated, open tubular (column) - ppm parts per million (1:106 v/v) - ppb parts per billion (1:109 v/v) - ppt parts per trillion (1:1012 v/v) - DL detection limit - RSD relative standard deviation - CO2 carbon dioxide - R115 C2ClF5 - R22 CHClF2 - R12 CCl2F2 - R142b C2H3ClF2 - R114 C2Cl2F4 - R11 CCl3F - R141b C2H3ClF - R113 C2Cl3F3  相似文献   

14.
A method is described for the determination of linear aldehydes (C1–C8) in waters. Aldehydes are extracted into n-pentane after derivatization with 2,4-dinitrophenyhydrazine and quantified by reversed-phase high-performance liquid chromatography with detection at 365 nm. With a 250-ml sample, the limit of detection is 1 μg l?1 for the C1–C8 aldehydes. The method is directly applicable to surface waters and drinking water. Analysis of different surface waters, treated water and a humic acid solution after ozonization showed that C1–C3 aldehydes predominated, their concentration increasing with increasing ozone dosage.  相似文献   

15.
A reliable high‐throughput ultra‐high performance liquid chromatography–tandem mass spectrometry (UPLC‐MS/MS) method was developed and validated for oleanolic acid (OA) determination in rat plasma and liver tissue using glycyrrhetic acid as the internal standard (IS). Plasma and liver homogenate samples were prepared using solid‐phase extraction. Chromatographic separation was achieved on a C18 column using an isocratic mobile phase system. The detection was performed by multiple reaction monitoring mode via positive electrospray ionization interface. The calibration curves showed good linearity (R2 > 0.9997) within the tested concentration ranges. The lower limit of quantification for plasma and liver tissue was ≤0.75 ng/mL. The intra‐ and inter‐day precision and accuracy deviations were within ±15% in plasma and liver tissue. The mean extraction recoveries ranged from 80.8 to 87.0%. In addition, the carryover, matrix effect, stability and robustness involved in the method were also validated. The method was successfully applied to the plasma and hepatic pharmacokinetics of OA after oral administration to rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
A simple, rapid, sensitive and reliable liquid chromatography–electrospray ionization mass spectrometry method for the quantification of imperatorin in rat plasma after oral administration and total furocoumarins of Radix Angelica dahuricae has been established. The plasma samples were deproteinized by adding internal standard (IS) osthole solution, which was prepared by acetonitrile. The analysis was performed on a Shim-pack C18 column (150 × 2.0 mm i.d., 5 μm) using acetonitrile and 0.5% formic acid solution (70:30, v/v) as a mobile phase. The detection was performed on a quadrupole mass spectrometer detector with an ESI interface operated in the selected ion monitoring mode. The linear quantification range of the method was 2–4000 ng mL?1 in rat plasma with a correlation coefficient greater than 0.99, the limit of detection (LOD) was 0.5 ng mL?1 and the lower limit of quantification (LLOQ) 2 ng mL?1. The intra- and inter-day relative standard deviations (RSD) were less than 2.5 and 3.5%, respectively. The recoveries were above 90%. The validated method was successfully applied to a pharmacokinetic study of imperatorin in rats after oral administration and total furocoumarins of Radix Angelica dahuricae.  相似文献   

17.
A simple, rapid and sensitive method was developed and validated for the analysis of C2–C5 volatile fatty acids (VFAs) in ambient air. This method involves preconcentration of VFAs with a sodium carbonate-impregnated silica gel tube, ultrasonic extraction with pure water, partition of VFAs to diethyl ether and determination using gas chromatography with a mass selective detector in the selected ion monitoring mode. A water-resistant free fatty acid phase capillary column was used to directly separate C2–C5 VFAs without the time-consuming derivatisation process. The limits of detection ranged from 0.001 to 0.003 µg m?3 and the limits of quantification ranged from 0.003 to 0.010 µg m?3. The validated method was successfully applied to the analysis trace-level VFAs in ambient air and in air samples from a landfill with perceived odour pollution.  相似文献   

18.
A new method, stir bar sorptive extraction (SBSE) with in situ derivatization and thermal desorption (TD)-gas chromatography-mass spectrometry (GC-MS), which is used for the determination of trace amounts of chlorophenols, such as 2,4-dichlorophenol (2,4-DCP), 2,4,6-trichlorophenol (2,4,6-TrCP), 2,3,4,6-tetrachlorophenol (2,3,4,6-TeCP) and pentachlorophenol (PCP), in tap water, river water and human urine samples, is described. The derivatization conditions with acetic acid anhydride and the SBSE conditions such as extraction time are investigated. Then, the stir bar is subjected to TD followed by GC-MS. The detection limits of the chlorophenols in tap water, river water and human urine samples are 1-2, 1-2, and 10-20 pg ml−1 (ppt), respectively. The calibration curves for the chlorophenols are linear and have correlation coefficients higher than 0.99. The average recoveries of the chlorophenols in all the samples are higher than 95% (R.S.D. < 10%) with correction using added surrogate standards, 2,4-dichlorophenol-d5, 2,4,6-trichlorophenol-13C6, 2,3,4,6-tetrachlorophenol-13C6 and pentachlorophenol-13C6. This simple, accurate, sensitive and selective analytical method may be applicable to the determination of trace amounts of chlorophenols in liquid samples.  相似文献   

19.
Abstract

A new liquid chromatographic method with increased sensitivity has been developed for the determination of isocyanates common in industrial environments. The isocyanates are converted to stable urea derivatives by reaction with 9-(N-methylaminomethyl)-anthracene. These derivatives were analyzed using high performance liquid chromatography on a bonded octadecylsilyl phase using isocratic elution with acetonitrile/water and detected either by a UV or a fluorescence detector. The method was applied to toluene 2, 4- and 2, 6-diisocyanate (2, 4- and 2, 6-TDI), hexamethylene diisocyanate (HDI) and 4, 4-diphenylmethane diisocyanate (MDI).

The influence of various salts on the retention of the reagent amine was studied, as well as the separation of the urea derivatives on different C18-phases. The detection limit is about 1 · 10?4 mg/m3 for the isocyanates investigated, using either UV or fluorescence detection. This means that the new method is ten to twenty times more sensitive than the previously described reversed phase LC method, which utilized N-4-nitrobenzyl-N-n-propylamine as reagent.  相似文献   

20.
A new method based on probe sonication extraction (USP) prior to high performance liquid chromatography (HPLC) has been developed for the determination of linear alkylbenzene sulfonates (LAS) from sewage sludge. The optimized method was designed to be cost effective compared to existing extraction methods (ultrasonic assisted extraction, Soxhlet or pressurized liquid extraction) which may require large quantities of organic solvents, or costly instrumentation or equipment.The main factors affecting the extraction efficiency (extractant volume, ultrasounds power and extraction time) were optimized using compost sludge. The detection limit of total LAS in the sludge was 10 mg kg− 1. The extraction of C10-C13 homologues is carried out using an extraction time of 7 min with 10 mL of methanol. Liquid chromatography with fluorescence (FL) detector is used for determination of LAS homologues. A mobile phase acetonitrile-water containing 0.1 M NaClO4 (65:35) and isocratic elution was used. Compounds were eluted over 6 min at a flow rate of 1 mL/min. Polar interferences are eluted between 0 and 2 min and no purification of the samples is required prior to the final determination by high performance liquid chromatography (HPLC). The recoveries of LAS in spiked sewage sludge were between 84.0% and 97.0%, which reflect the efficiency of the method for extraction of these analytes from sewage sludge. Concentration levels found were between 11,858 mg kg− 1 for digested sludge and 2379 mg kg− 1 for compost sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号