首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A simple, isocratic, stability-indicating liquid chromatographic method for quantitative determination of curcumin was successfully developed. The chromatographic separations were achieved using a Hi-Q-Sil C18; 4.6 mm × 250 mm and 10 μm particle size column employing acetonitrile and acetate buffer (pH 3.0; 60: 40, v/v) as the mobile phase. The analyte was subjected to acidic, basic, oxidative, thermal and photo degradation. The method was validated with respect to linearity, precision, accuracy, limit of detection and limit of quantification. Curcumin was detected by UV-Vis detector at 425 nm whereas the degradation products were detected at 280 nm. The method was linear over the concentration range of 1–10 μg mL?1. The limit of detection was found to be 0.06 μg mL?1 and the quantification limit was 0.21 μg mL?1. Considerable degradation of the analyte was observed when it was subjected to alkaline conditions. Accuracy, evaluated as recovery, was in the range of 97–103%. Intra-day precision and intermediate precision showed relative standard deviations <1% and <2% respectively.  相似文献   

2.
A simple and rapid HPLC method using phenacetin (PHN) as internal standard has been developed for simultaneous determination of acetaminophen, caffeine, and chlorphenamine maleate in the product compound paracetamol and chlorphenamine maleate granules. Separation and quantitation were achieved on a 250 mm × 4.6 mm, 5 μm particle, C18 column. The mobile phase was methanol 0.05 mol L?1 aqueous KH2PO4 solution, 45:55 (v/v), containing 0.1% triethylamine and adjusted to pH 3.6 by addition of phosphoric acid; the flow rate was 1.0 mL min?1. Detection of all compounds was by UV absorbance at 260 nm and elution of the analytes was achieved in less than 12 min. The linearity, accuracy, and precision of the method were acceptable to good over the concentration ranges 6.4–153.6 μg mL?1 for acetaminophen, 5.0–120.0 μg mL?1 for caffeine, and 9.6–230.4 μg mL?1 for chlorphenamine maleate.  相似文献   

3.
A simple and novel LC method has been developed for determination of isepamicin (ISP) in rat plasma, an aminoglycoside antibiotic agent. After protein precipitation and clean-up procedure to remove lipophilic contaminants, ISP is derivatized by pre-column with 9-fluorenylmethyl chloroformate for fluorescence detection. Chromatographic separations are achieved using a C18 column and mobile phase consisting of water and acetonitrile (68/32, v/v). Amikacin was used as an internal standard. The calibration curve was linear over a concentration range of 0.625–15 μg mL?1. The limit of quantification was 0.45 μg mL?1. The intra- and inter-day variabilities of ISP were both less than 5%. Both derivatives were stable for at least a week at ambient condition. This assay procedure should have useful application in therapeutic drug monitoring of ISP. The limit of detection was 0.10 μg mL?1. The specificity, assay linearity, low level assay linearity and assay repeatability were also investigated. The established method provides a reliable bioanalytical method to carry out isepamicin pharmacokinetics in rat plasma.  相似文献   

4.
To evaluate the bioequivalence of nateglinide, a rapid and specific liquid chromatographic-electrospray ionization mass spectrometric method was developed and validated to determine nateglinide for human plasma samples. The analyte was detected using electrospray positive ionization mass spectrometry in the selected ion monitoring mode. Tinidazole was used as the internal standard. A good linear relationship obtained in the concentration ranged from 0.05 to 16 μg mL?1 (r 2 = 0.9993). Lower limit of quantification was 0.05 μg mL?1 using 100 μL of plasma sample. Intra- and inter-day relative standard deviations were 2.1–7.5 and 4.7–8.9%, respectively. Among the pharmacokinetic data obtained, T max was 2.09 ± 1.06 h for reference formulation and 2.40 ± 0.97 h for test formulation. C max was 4.17 ± 1.31 μg mL?1 for reference formulation and 4.37 ± 1.53 μg mL?1 for test formulation. The half-life (t ½) was 1.93 ± 0.44 h for reference formulation and 1.92 ± 0.29 h for test formulation. AUC0–10h was 13.67 ± 4.36 μg h mL?1 for reference formulation and 13.21 ± 4.09 μg h mL?1 for test formulation. This method was successfully applied to the pharmacokinetic study in human plasma samples.  相似文献   

5.
A stability-indicating LC method was developed for the simultaneous determination of ibuprofen and diphenhydramine citrate in pharmaceutical dosage forms. The chromatographic separation was achieved on an Inertsil ODS 3V, 150 × 4.6 mm, 5 μm, column. The mobile phase contained a mixture of 50 mM potassium dihydrogen phosphate buffer:acetonitrile:triethylamine:glacial acetic acid (55:45:0.2:0.2, v/v/v/v). This method allowed the determination of 2.85–9.14 mg mL?1 of ibuprofen and 0.54–1.73 mg mL?1 of diphenhydramine citrate, in a diluent consisting of pH 7.2, 50 mM potassium dihydrogen phosphate buffer:acetonitrile (40:60, v/v). The flow rate was 1.2 mL min?1 and the detection wavelength was 260 nm. The limit of detection for ibuprofen and diphenhydramine citrate was 1.72 and 0.54 μg mL?1 and the limit of quantification was 5.73 and 1.64 μg mL?1, respectively. This method was validated for accuracy, precision and linearity. The method was also found to be stability indicating.  相似文献   

6.
Antioxidant activities of eight indigenous cyanobacterial strains belonging to the genera Oscillatoria, Chroococcidiopsis, Leptolyngbya, Calothrix, Nostoc and Phormidium were studied in relation with their phenolic and flavonoid contents, ranging 3.9–12.6 mg GAE g?1 and 1.7–3.44 mg RE g?1. The highest activities were shown by Leptolyngbya sp. SI-SM (EC50 = 63.45 and 67.49 μg mL?1) and Calothrix sp. SI-SV (EC50 = 65.79 and 69.38 μg mL?1) calculated with ABTS and DPPH assays. Significant negative correlations were seen between total phenolic and flavonoid contents and the antioxidant activities in terms of EC50 values. Furthermore, HPLC detected 15 phenolic compounds with total concentrations ranging from 277.3 to 829.7 μg g?1. The prevalent compounds in most of the strains were rutin, tannic acid, orcinol, phloroglucinol and protocatechuic acid. Cyanobacterial strains showed high potential as a good source of phenolic compounds with potent antioxidative potential which could be beneficial for food, cosmetic and pharmaceutical industries.  相似文献   

7.
An RP-HPLC method was developed for the first time to simultaneously determine five major compounds in Polygonum cuspidatum, namely resveratrol, polydatin, anthraglycoside B, emodin and physcion with UV detection at 306 nm. The column was an Agilent Zorbax SB-C18 (250 × 4.6 mm i.d., 5 μm). The separation was carried out with a gradient program. The mobile phase was acetonitrile–water (containing 0.1% formic acid) at a flow rate of 1.0 mL min?1. The standard curve was rectilinear in the range of 2.04–62.96 μg mL?1 (= 0.9998) for resveratrol, 20.13–239.7 μg mL?1 (= 0.9998) for polydatin, 7.19–71.92 μg mL?1 (= 1.0000) for anthraglycoside B, 2.68–83.68 μg mL?1 (= 0.9998) for emodin and 0.60–14.37 μg mL?1 (= 0.9997) for physcion. The recoveries of the markers were 96.0, 106.5, 97.8, 97.9 and 98.1%, respectively. The relative standard deviation of intra-day and inter-day were less than 5.0 and 2.3%. This method was simple, accurate and reproducible. The developed method was successfully applied to analyze five compounds in P. cuspidatum of 20 commercial brands.  相似文献   

8.
A simple, rapid and sensitive column liquid chromatographic method was developed and validated to measure simultaneously the amount of ascorbic acid and phenolic acids at single wavelength (240 nm) in order to assess drug release profiles and drug-excipients compatibility studies for a new sustained release tablet formulation and its subsequent stability studies. A combined isocratic and linear gradient reversed-phase LC method was carried out at 240 nm. Quantification was achieved with reference to the external standards. The linearity for concentrations between 0.042 and 0.150 mg mL?1 for ascorbic acid, 0.084–0.250 mg mL?1 for chlorogenic acid, 0.053–0.360 mg mL?1 for caffeic acid, and 0.016–0.250 mg mL?1 for ferulic acid (r > 0.99 for all analytes) were established. The recovery of the active ingredients from the samples was at the range of 92.3–102.9%. Intra- and inter-day precisions were less than 2.5%. The limits of detection and quantification were 8 and 24 μg mL?1 for ascorbic acid, 18 and 54 μg mL?1 for chlorogenic acid, 37 and 112 μg mL?1 for caffeic acid, and 11 and 34 μg mL?1 for ferulic acid. The determination of the four active ingredients was not interfered by the excipients of the products. Samples were stable in the release mediums (37 °C) at least for 12 h.  相似文献   

9.
A new, rapid, selective, cheap and simple RP-LC method has been developed and validated for the simultaneous determination of clobetasol propionate and calcipotriol mixtures in bulk drugs (raw materials) and in a novel-fixed dose emulgel formulation. Separation was carried out using a NovaPak C18 column with methanol:water (74:26 v/v) as mobile phase for isocratic elution at a flow rate of 1.0 mL min?1. The column temperature was set at 25 °C. Calibration curves were established ranging between 0.5 and 20 μg mL?1 and 0.5 and 10 μg mL?1 for clobetasol propionate and calcipotriol, respectively. Limit of detection and limit of quantification values of the method was found as 0.16 and 0.48 μg mL?1 for clobetasol propionate and 0.10 and 0.30 μg mL?1 for calcipotriol, respectively. The method was validated in accordance with ICH guidelines and obtained results proved that the proposed method was precise, accurate, selective and sensitive for the simultaneous analysis of clobetasol propionate and calcipotriol. The proposed method can be easily applied for the simultaneous determination of clobetasol propionate and calcipotriol in prepared emulgel formulations. The obtained validation results showed that the RP-LC method is suitable for routine quantification of clobetasol propionate and calcipotriol in emulgel formulations with high precision and accuracy.  相似文献   

10.
A novel, rapid and specific ultra performance liquid chromatography-photo diode array detection method was developed for the simultaneous determination of 2,3,5,4′-tetrahydroxystilbene-2-O-β-d-glucoside (TSG), emodin-8-O-β-d-glucoside (EMG), emodin (EM) and physcion (PS). The chromatographic separation was performed on an Acquity BEH C18 column (100 × 2.1 mm i.d., 1.7 μm). The mobile phase was a mixture of 0.3% acetic acid–water and 0.3% acetic acid–acetonitrile employing gradient elution at the flow rate of 0.4 mL min?1. The four compounds behaved linearly in the concentration range between 60.80–3040.00 μg mL?1 (TSG), 0.50–25.00 μg mL?1 (EMG), 2.16–108.00 μg mL?1 (EM) and 1.56–78.00 μg mL?1 (PS), respectively with correlation coefficients >0.999. The precision of the method were below 5% RSD. Recoveries of the four compounds ranged from 95.71 to 102.97%, with RSD values less than 2%.  相似文献   

11.
Fan Xu  Guili Xu  Beicheng Shang  Fang Yu 《Chromatographia》2009,69(11-12):1421-1426
A simple, specific and sensitive liquid chromatographic method has been developed for the assay of ketorolac in human plasma and urine. The clean-up of plasma and urine samples were carried out by protein precipitation procedure and liquid–liquid extraction, respectively. Separation was performed by a Waters sunfire C18 reversed-phase column maintained at 35 °C. The mobile phase was a mixture of 0.02 M phosphate buffer (pH adjusted to 4.5 for plasma samples and to 3.5 for urine samples) and acetonitrile (70:30, v/v) at a flow rate of 1.0 mL min?1. The UV detector was set at 315 nm. Nevirapine was used as an internal standard in the assay of urine sample. The method was validated over the concentration range of 0.05–8 and 0.1–10 μg mL?1 for ketorolac in human plasma and urine, respectively. The limits of detection were 0.02 and 0.04 μg mL?1 for plasma and urine estimation at a signal-to-noise ratio of 3. The limits of quantification were 0.05 and 0.1 μg mL?1 for plasma and urine, respectively. The extraction recoveries were found to be 99.3 ± 4.2 and 80.3 ± 3.7% for plasma and urine, respectively. The intra-day and inter-day standard deviations were less than 0.5. The method indicated good performance in terms of specificity, linearity, detection and quantification limits, precision and accuracy. This assay demonstrated to be applicable for clinical pharmacokinetic studies.  相似文献   

12.
《Analytical letters》2012,45(16):2518-2524
A reversed-phase high performance liquid chromatographic method was improved for the simultaneous determination of theobromine, paraxanthine, theophylline, and caffeine in urine. The method includes a liquid-liquid extraction at alkaline pH with ethylacetate. The 7-(2,3-dihidroxypropyl) theophylline was used as an internal standard (ISTD). The separation was achieved on a C18 column using 14:86 methanol:buffer (25 mM KH2PO4 adjusted to pH 4 with ortho-phosphoric acid) solution as mobile phase under isocratic conditions at a flow rate 1 mL min?1. An ultraviolet absorption at 274 nm was monitored. In these conditions, the LOD was 0.03 μg mL?1 for theobromine, 0.02 μg mL?1 for paraxanthine, 0.04 μg mL?1 for theophylline, and 0.08 μg mL?1 for caffeine. The method has been applied to urine samples.  相似文献   

13.
This article describes the development and validation of a selective high-performance liquid chromatography method that allows, after liquid–liquid extraction and pre-column derivatization reaction with quercetin, the quantification of aluminium chlorohydrate in antiperspirant creams. Chromatographic separation was achieved on an XTerra MS C18 analytical column (150 × 3.0 mm i.d., particle size 5 μm) using a mobile phase of acetonitrile:water (15:85, v/v) containing 0.08 % trifluoroacetic acid at a flow rate of 0.30 mL min?1. Ultraviolet spectrophotometric detection at 415 nm was used. The assay was linear over a concentration range of 3.7–30.6 μg mL?1 for aluminium with a limit of quantitation of 3.74 μg mL?1. Quality control samples (4.4, 17.1 and 30.6 μg mL?1) in five replicates from five different runs of analysis demonstrated intra-assay precision (% coefficient of variation <3.8 %), inter-assay precision (% coefficient of variation <5.4 %) and an overall accuracy (% recovery) between 96 and 101 %. The method was used to quantify aluminium in antiperspirant creams containing 11.0, 13.0 and 16.0 % (w/w) aluminium chlorohydrate, respectively.  相似文献   

14.
A HPLC and a HPTLC-densitometric method were developed for the quantification of prim-O-glucosylcimifugin and 4′-O-β-d-glucosyl-5-O-methylvisamminol the major chromone glucosides in the roots of Saposhnikovia divaricata. The validation of both methods resulted in comparable parameters regarding stability, specificity, linearity, robustness, precision and recovery, whereas complementary advantages were obtained concerning LOD and LOQ. The HPTLC-based densitometry revealed a lower LOD (1.11 versus 4.37 μg mL?1 in HPLC) and LOQ (3.36 versus 13.24 μg mL?1 in HPLC) for prim-O-glucosylcimifugin, whereas the HPLC resulted in a lower LOD (1.00 versus 4.10 μg mL?1 in HPTLC-densitometry) and LOQ (3.04 versus 12.46 μg mL?1 in HPTLC-densitometry) for 4′-O-β-d-glucosyl-5-O-methylvisamminol. Both methods revealed nearly matching contents of the chromones after analysis of different commercially available batches of Saposhnikoviae divaricatae radix with a total content for both chromone glycosides in the range from 0.31 ± 0.011 to 0.56 ± 0.021 % determined by HPLC and between 0.34 ± 0.011 and 0.61 ± 0.009 % determined by HPTLC. The plant material cultivated in Germany showed a very similar content and ratio of both chromone glucosides in comparison to the standard batches originating from China.  相似文献   

15.
The dicarbonyl compounds glyoxal, methylglyoxal, and dimethylglyoxal have been separated by capillary GC on a 30 m × 0.32 mm i.d. HP-5 column after precolumn derivatization with 2,3-diamino-2,3-dimethylbutane at pH 4. Chromatographic separation was complete in 6 min. Nitrogen was used as carrier gas at a flow rate of 2 mL min?1. Split injection was performed with a split ratio of 10:1 (v/v). The derivatives were monitored by flame-ionization detection, and linear calibration plots were obtained in the ranges 0.06–0.69, 0.05–1.01, and 0.07–1.33 μg mL?1 for glyoxal, methylglyoxal, and dimethylglyoxal, respectively; the respective detection limits were 20, 10, and 10 ng mL?1. Glyoxal and methylglyoxal were analyzed in serum and urine from diabetics and from healthy volunteers. Amounts of glyoxal and methylglyoxal in serum from diabetic patients were 0.19–0.33 and 0.20–0.29 μg mL?1, respectively, with respective relative standard deviations (RSD) of 0.8–1.0 and 0.8–1.1%. Amounts of glyoxal and methylglyoxal in serum from healthy volunteers were 0.05–0.08 and 0.04–0.10 μg mL?1, respectively, with respective RSD of 0.9–1.2 and 1.0–1.2%. Levels of glyoxal and methylglyoxal in urine from diabetic patients were 0.18–0.40 and 0.25–0.36 μg mL?1, respectively.  相似文献   

16.
A isocratic, selective and accurate LC method of analysis of mexiletine in pharmaceutical preparations has been developed and validated. The method is based on derivatization of mexiletine with 4-chloro-7-nitrobenzofurazan in pH 9.0 borate buffer to yield a yellow product. Chromatography was performed on a C18 column (150 × 4.6 mm i.d.) with acetonitrile–water 80:20 (v/v) as mobile phase at a flow rate of 1.0 mL min?1. UV–visible absorbance detection was performed at 458 nm. The retention time of the mexiletine derivative was 4.10 min, and response was a linear function of concentration in the range 0.5–4.0 μg mL?1 (r = 0.9998). The limits of detection and quantification were 0.05 and 0.15 μg mL?1, respectively. Method validation revealed precision, sensitivity, and robustness were acceptable. Low RSD values are indicative of high precision, and high recovery values are indicative of the accuracy of the method. Results obtained by use of the proposed method for analysis of the mexiletine content of pharmaceutical a preparation were compared with those obtained by use of the official method. The method has been used for analysis of pharmaceutical preparations.  相似文献   

17.
A stability-indicating reversed-phase LC method for analysis of aceclofenac and paracetamol in tablets and in microsphere formulations has been developed and validated. The mobile phase was 80:20 (v/v) methanol–phosphate buffer (10 mM at pH 2.5 ± 0.02). UV detection was at 276 nm. The method was linear over the concentration ranges 16–24 and 80–120 μg mL?1 for aceclofenac and paracetamol, respectively, with recovery in the range 100.9–102.22%. The limits of detection and quantitation for ACF were 0.0369 and 0.1120 μg mL?1, respectively; those for PCM were 0.0631 and 0.1911 μg mL?1, respectively.  相似文献   

18.
A novel analytical technique termed ultrasonic-assisted drop-to-drop solvent microextraction (USA-DDSME) in a capillary tube was developed to determine trace benzene, toluene, xylene in one drop of a water sample, which was combined with gas chromatography–flame ionization detection (GC–FID). The advantages of this method are rapidity, convenience, ease of operation, simplicity of the device, and extremely little solvent and sample consumption. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, the volume of sample, extraction time and effect of salt concentration were optimized. The best optimum parameters for extraction were achieved with 3 μL of extraction solvent. Chloroform was divided into four equal divisions in 20 μL water sample (without salt addition) in a capillary tube and ultrasonicated for 10 min, centrifugated at 2,500 rpm for 5 min to let the extraction solvent settle at the bottom of the capillary tube, then 1 μL of the separated extraction solvent was injected into the GC–FID for analysis. Linearity of the method was determined by analyzing spiked water samples over a concentration range of 0.1–50 μg mL?1. Correspondingly, the LOD values were 0.01 μg mL?1. All calibration curves were found to have good linearity with correlation coefficients (r 2) > 0.995. The precision (RSD) of the system, measured by six repeated determinations of the analytes at 1 μg mL?1 were in the range of 1.6–3.5%.  相似文献   

19.
A GC-MS method with HP-5MS capillary column was developed for the simultaneous determination of underivatized flunitrazepam, clonazepam, alprazolam, diazepam and ketamine from drinks by extraction with chloroform: isopropanol 1:1 (v/v). All linearity ranges were between 50 and 1,000 μg mL?1 for all compounds both in beer and in peach juice. Limit of detection was between 1.3 and 34.2 μg mL?1, limit of quantification was between 3.9 and 103.8 μg mL?1, the range of recoveries was 73.0 and 112.6% for all drugs in both beverages. The reported method was sensitive, rapid, and suitable for the analysis of the spiked drinks as evidence of sexual assault and robbery phenomena.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号