首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The single phase ??-LiZnPO4·H2O was directly synthesized via solid-state reaction at room temperature using LiH2PO4·H2O, ZnSO4·7H2O, and Na2CO3 as raw materials. XRD analysis showed that ??-LiZnPO4·H2O was a compound with orthorhombic structure. The thermal process of ??-LiZnPO4·H2O experienced two steps, which involved the dehydration of one crystal water molecule at first, and then the crystallization of LiZnPO4. The DTA curve had the one endothermic peak and one exothermic peak, respectively, corresponding to dehydration of ??-LiZnPO4·H2O and crystallization of LiZnPO4. Based on the iterative iso-conversional procedure, the average values of the activation energies associated with the thermal dehydration of ??-LiZnPO4·H2O, was determined to be 86.59?kJ?mol?1. Dehydration of the crystal water molecule of ??-LiZnPO4·H2O is single-step reaction mechanism. A method of multiple rate iso-temperature was used to define the most probable mechanism g(??) of the dehydration step. The dehydration step is contracting cylinder model (g(??)?=?1?(1???)1/2) and is controlled by phase boundary reaction mechanism. The pre-exponential factor A was obtained on the basis of E a and g(??). Besides, the thermodynamic parameters (??S ??, ??H ??, and ??G ??) of the dehydration reaction of ??-LiZnPO4·H2O were determined.  相似文献   

2.
2CaO·3B2O3·H2O which has non-linear optical (NLO) property was synthesized under hydrothermal condition and identified by XRD, FTIR and TG as well as by chemical analysis. The molar enthalpy of solution of 2CaO·3B2O3·H2O in HCl·54.572H2O was determined. From a combination of this result with measured enthalpies of solution of H3BO3 in HCl·54.501H2O and of CaO in (HCl+H3BO3) solution, together with the standard molar enthalpies of formation of CaO(s), H3BO3(s), and H2O(l), the standard molar enthalpy of formation of −(5733.7±5.2) kJ mol−1 of 2CaO·3B2O3·H2O was obtained. Thermodynamic properties of this compound were also calculated by a group contribution method.  相似文献   

3.
Dehydration is an important process which affects the chemical, physical and mechanical properties of materials. This article describes the thermal dehydration and decomposition of the Sorel cement phase 3Mg(OH)2 · MgCl2 · 8H2O, studied by in situ synchrotron X‐ray powder diffraction and thermal analyses. Attention is paid on the determination of the chemical composition and crystal structure of the lower hydrates, identified as the phases 3Mg(OH)2 · MgCl2 · 5.4H2O and 3Mg(OH)2 · MgCl2 · 4.6H2O. The crystal structure of 3Mg(OH)2 · MgCl2 · 4.6H2O is solved and refined by the Rietveld method and a structural model for the 3Mg(OH)2 · MgCl2 · 5.4H2O phase is given. These phases show statistical distribution of water molecules, hydroxide and chloride anions positioned as ligands on the magnesium octahedra. A structural scheme of the temperature induced transformations in the thermal range from 25 to 500 °C is presented.  相似文献   

4.
The paper reports an attempt to correlate the structures of hydrates of copper(II) sulphate with some characteristic features of the kinetics of their thermal decompositions. Non-isothermal thermogravimetric measurements were employed to obtain values of experimental activation energy and entropy for the dehydration of CuSO4 · 5 H2O, CuSO4 · 3 H2O and CuSO4 · H2O. The values ofE * andΔS * for the dehydration of CuSO4 · 3 H2O were found to be only little affected by the mode of preparation of this compound. On the other hand, the values ofE * andΔS * for the dehydration of CuSO4 · ·H2O are strongly dependent on whether this compound was prepared by thermal decomposition of CuSO4 · 5 H2O or CuSO4 · 3 H2O, or by crystallization from solution. As regards the crystalline hydrates of copper(II) sulphate, the greatest energetic hindrance for dehydration was observed for CuSO4 · 3 H2O. The experimental results are also discussed with respect to the present opinions concerning the possibilities of using thermal analyses to obtain information on the relationship between the structures and reactivities of solids.  相似文献   

5.
The single phase NH4NiPO4·6H2O was synthesized by solid‐state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. The NH4NiPO4·6H2O and its calcined products were characterized using X‐ray powder diffraction (XRD), thermogravimetry and differential thermal analyses (TG/DTA), Fourier transform IR (FT‐IR), ultraviolet‐visible (UV‐vis) absorption spectroscopy, and scanning electron microscopy (SEM). The results showed that the product dried at 80°C for 3 h was orthorhombic NH4NiPO4·6H2O [space group Pmm2(25)], and surfactant polyethylene glycol (PEG)‐400 can direct growth of crystal NH4NiPO4·6H2O. The thermal process of NH4NiPO4·6H2O experienced three steps, which involve the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. The product of thermal decomposition at 150°C for 2 h, orthorhombic NH4NiPO4·H2O, is layered compound with an interlayer distance of 0.8370 nm.  相似文献   

6.
Using differential scanning calorimetry (DSC) in combination with effluent analysis, differential thermal analysis (DTA), thermogravimetric analysis (TG) and X-ray analysis, the dehydration of ZnSO4·7H2O and NiSO4·6H2O was investigated and a few transition enthalpies were measured. The dehydration of both compounds showed a great analogy. For NiSO4·6H2O the α—β phase transition was studied.The dehydration scheme of both hydrates can be given as follows:
  相似文献   

7.
The thermal dehydration of Ce2(SO4)3·5H2O, Ce2(SO4)3·8H2O, Ce2(SO4)3·9H2O and their isomorphous deuterated compounds was studied by means of thermogravimetric measurements. A kinetic analysis of the TG curves obtained was carried out by computer. The thermal stability, Arrhenius parameters and mechanism of dehydration were investigated.  相似文献   

8.
The nonahydrate of iron(III) nitrate shows no phase transitions in the range of ?40 to 0 °C. Both hexahydrate Fe(NO3)3·6H2O and nonahydrate Fe(NO3)3·9H2O have practically the same thermal behavior. Thermal decomposition of iron nitrate is a complex process which has a different mechanism than those described for other trivalent elements. Thermolysis begins with the successive condensation of 4 mol of the initial monomer accompanied by the loss of 4 mol of nitric acid. At higher temperature, hydrolytic processes continue with the gradual elimination of nitric acid from resulting tetramer and dimeric iron oxyhydroxide Fe4O4(OH)4 is formed. After complete dehydration, oxyhydroxide is destroyed leaving behind 2 mol of Fe2O3. The molecular mechanics method provides a helpful insight into the structural arrangement of intermediate compounds.  相似文献   

9.
In this work, we present first data on the infrared and Raman spectroscopic characteristics, thermal analysis and solid-state transformations of Mg2KH(AsO4)2·15H2O, which is a unique example of an acid salt containing dimeric units [H(AsO4)2] in its crystal structure. The infrared and Raman spectra recorded at ambient conditions have been studied, and an assignment of the observed vibrational bands has been proposed considering the crystal structure data. The thermal behavior of Mg2KH(AsO4)2·15H2O has been investigated by simultaneous TG/DTA/mass spectrometry experiments in the temperature range up to 1000 °C at different heating rates, and new data on the thermal stability and thermal dehydration of Mg2KH(AsO4)2·15H2O have been obtained. The phase composition after the dehydration processes in the temperature interval of 300–650 °C has been studied by combination of powder XRD and IR spectroscopic analyses. The spectroscopic and thermal properties of Mg2KH(AsO4)2·15H2O have been compared to those of the isostructural phosphate salt Mg2KH(PO4)2·15H2O.  相似文献   

10.
The single phase NH4NiPO4·6H2O was synthesized by solid-state reaction at room temperature using NiSO4·6H2O and (NH4)3PO4·3H2O as raw materials. XRD analysis showed that NH4NiPO4·6H2O was a compound with orthorhombic structure. The thermal process of NH4NiPO4·6H2O experienced three steps, which involves the dehydration of the five crystal water molecules at first, and then deamination, dehydration of the one crystal water, intramolecular dehydration of the protonated phosphate groups together, at last crystallization of Ni2P2O7. In the DTA curve, the two endothermic peaks and an exothermic peak, respectively, corresponding to the first two steps’ mass loss of NH4NiPO4·6H2O and crystallization of Ni2P2O7. Based on Flynn–Wall–Ozawa equation, and Kissinger equation, the average values of the activation energies associated with the thermal decomposition of NH4NiPO4·6H2O, and crystallization of Ni2P2O7 were determined to be 47.81, 90.18, and 640.09 kJ mol−1, respectively. Dehydration of the five crystal water molecules of NH4NiPO4·6H2O, and deamination, dehydration of the crystal water of NH4NiPO4·H2O, intramolecular dehydration of the protonated phosphate group from NiHPO4 together could be multi-step reaction mechanisms. Besides, the thermodynamic parameters (ΔH , ΔG , and ΔS ) of the decomposition reaction of NH4NiPO4·6H2O were determined.  相似文献   

11.
Thermal decomposition of tetra(piperidinium) octamolybdate tetrahydrate, [C5H10NH2]4[Mo8O26]·4H2O, was investigated in air by means of TG‐DTG/DTA, DSC, TG‐IR and SEM. TG‐DTG/DTA curves showed that the decomposition proceeded through three well‐defined steps with DTA peaks closely corresponding to mass loss obtained. Kinetics analysis of its dehydration step was performed under non‐isothermal conditions. The dehydration activation energy was calculated through Friedman and Flynn‐Wall‐Ozawa (FWO) methods, and the best‐fit dehydration kinetic model function was estimated through the multiple linear regression method. The activation energy for the dehydration step of [C5H10NH2]4[Mo8O26]·4H2O was 139.7 kJ/mol. The solid particles became smaller accompanied by the thermal decomposition of the title compound.  相似文献   

12.
The following Zn(II) complexes of deprotonated 6-amino-5-nitrosouracil (AH), 6-amino-3-methyl-5-nitrosouracil (BH) and 6-amino-1-methyl-5-nitrosouracil (CH) have been prepared and their thermal behaviour studied by TG and DSC techniques: ZnA2(H2O)2, ZnB2 · 4 H2O, ZnC2 · 4 H2O and ZnC2(H2O)2 · H2O. The values of the dehydration enthalpy of the complexes are in the 31.3–76.5 kJ mol?1 H2O range and, except in the first complex, the dehydration processes take place in several steps. The pyrolysis of the complexes finishes between 540 and 725° C ZnO remaining as residue.  相似文献   

13.
On the Thermal Dehydration of K2AlF5 · H2O The thermal dehydration of K2AlF5 · H2O was investigated by X-ray diffraction and thermal analysis. Two dehydrat phases were detected. K2AlF5 (II) is orthorhombic (a = 758 pm, b = 1257 pm, c = 1044 pm) and isotypical with α-(NH4)2FeF5 (cis-connected chains). The tetragonal phase is formed by a topotactic mechanism. This phase is instable and tends to rehydrate or to transform into the more stable orthorhombic phase. The irreversible transformation from I into II is connected with an exothermal DTA effect.  相似文献   

14.
The MnV2O6·4H2O with rod-like morphologies was synthesized by solid-state reaction at low heat using MnSO4·H2O and NH4VO3 as raw materials. XRD analysis showed that MnV2O6·4H2O was a compound with monoclinic structure. Magnetic characterization indicated that MnV2O6·4H2O and its calcined products behaved weak magnetic properties. The thermal process of MnV2O6·4H2O experienced three steps, which involves the dehydration of the two waters of crystallization at first, and then dehydration of other two waters of crystallization, and at last melting of MnV2O6. In the DSC curve, the three endothermic peaks were corresponding to the two steps thermal decomposition of MnV2O6·4H2O and melting of MnV2O6, respectively. Based on the Kissinger equation, the average values of the activation energies associated with the thermal decomposition of MnV2O6·4H2O were determined to be 55.27 and 98.30?kJ?mol?1 for the first and second dehydration steps, respectively. Besides, the thermodynamic function of transition state complexes (??H ??, ??G ?? , and ??S ?? ) of the decomposition reaction of MnV2O6·4H2O were determined.  相似文献   

15.
The hexahydrate of praseodymium nitrate hexahydrate Pr(NO3)3·6H2O does not show phase transitions in the range of 233–328 K when the compound melts in its own water of crystallization. It is suggested that the thermal decomposition is a complex step-wise process, which involves the condensation of 6 mol of the initial monomer Pr(NO3)3·6H2O into a cyclic cluster 6[Pr(NO3)3·6H2O]. This hexamer gradually loses water and nitric acid, and a series of intermediate amorphous oxynitrates is formed. The removal of 68% HNO3–32% H2O azeotrope is essentially a continuous process occurring in the liquid phase. At higher temperatures, oxynitrates undergo thermal degradation and lose water, nitrogen dioxide and oxygen, leaving behind normal praseodymium oxide Pr2O3. The latter absorbs approximately 1 mol of atomic oxygen from N2O5 disproportionation, giving rise to the non-stoichiometric higher oxide Pr2O3.33. All mass losses are satisfactorily accounted for under the proposed scheme of thermal decomposition.  相似文献   

16.
Hydrazinium metal ethylenediaminetetraacetate complexes of molecular formula (N2H5)2[Mg(edta)·H2O], (N2H5)3[Mn(edta)··H2O](NO3)·H2O, N2H5[Fe(edta)·H2O], N2H5[Cu(Hedta)·H2O] and N2H5[Cd(Hedta)·H2O]·H2O have been synthesized and characterized by elemental and chemical analysis, conductivity and magnetic measurements and spectroscopic techniques. The thermal behaviour of these complexes has been studied by thermogravimetry and differential thermal analysis. The data set provided by the simultaneous TG-DTA curves of the complexes shows the occurrence of three or four consecutive steps such as dehydration, ligand pyrolysis and formation of metal oxides. X-ray powder diffraction patterns of copper and cadmium complexes show that they are not isomorphous. These studies suggest seven coordination for Mg,Mn, Fe complexes and six coordination for Cu and Cd derivatives.  相似文献   

17.
The thermal behavior, thermostructural and morphological changes, of rare earth phosphate powders RePO4·nH2O (Re=La, Ce or Y) was investigated up to 1500°C using high temperature X-ray diffraction, FT-infrared and Raman spectroscopies and thermogravimetry coupled with differential thermal analysis. The hydration water of the compounds was zeolitic (for Re=La or Ce) or coordinated (for Re=Y) and was associated with a divariant or a monovariant equilibrium of dehydration, respectively. The high temperature anhydrous monoclinic phase LaPO4 or CePO4 formed irreversibly at about 750°C after the total dehydration of the hexagonal hydrated structure while the dehydration of the monoclinic YPO4·2H2O phase began from about 190°C with its simultaneous decomposition into tetragonal YPO4. A polytrioxophosphate secondary minor phase Re(PO3)3 resulting from adsorbed H3PO4 was formed at 950°C and decomposed at 1350°C. The particle morphology did not change with the temperature but grain coalescence occurred below 1000°C.  相似文献   

18.
The thermal dehydration of CuSeO3·2 H2O, and the thermal dissociation of CuSeO3 and Ag2SeO3 are studied. The mechanism of these processes is suggested. The heats of phase transitions and the specific heats of the corresponding compounds are determined.  相似文献   

19.
Three hexakis(imidazole)metallo complexes of Co, Cd and Ni were synthesized and spectroscopically characterized. The crystal and molecular structures have been determined by X-ray crystallography analysis. The metal ions have an octahedral geometry with the MN6 chromophore. The electrochemical experimental results indicate that both [Co(Im)6]C12·2HCl·2H2O (1) and [Ni(Im)6]C12·4H2O (3) [Im=imidazole] could interact with DNA mainly by intercalation.  相似文献   

20.
The preparation of a new modification of vanadyl sulfate trihydrate, VOSO4 · 3H2O, is described. In the course of its thermal dehydration, another new phase, VOSO4 · 2H2O, is observed as an intermediate. Crystal data for the two compounds are: VOSO4 · 3H2O, orthorhombic, a = 8.980 ± 0.006, b = 9.026 ± 0.009, c = 7.776 ± 0.003 Å, space group P21212; VOSO4 · 2H2O, monoclinic, a = 8.913 ± 0.027, b = 8.93 ± 0.09, c = 7.80 ± 0.06 Å, β = 92.4 ± 0.6°. From the topotaxy of the dehydration reaction, structural models for the two phases are deduced. They consist essentially of VOSO4 layers similar to those in α-VOSO4 and interlayer water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号