首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new family of framework nanostructures including carbon atoms in sp 2 and sp 3 hybridized states is reported. Structure optimization was fulfilled using MM+ molecular mechanics and Hückel semiempirical methods. The energy characteristics of the structures have been evaluated. Comparative analysis of the stability of the title nanostructures has been performed in relation to their geometry and relative contents of sp 2/sp 3 atoms.  相似文献   

2.
It was shown that the monomeric rhodium sulfate complexes [Rh(H2O)4(SO4)]+, trans-[Rh(H2O)2(SO4)2]?, cis-[Rh(H2O)2(SO4)2]?, and [Rh(SO4)3]3? were not predominant forms in aqueous solutions. The 103Rh NMR chemical shifts of the complexes were assigned, and the conditions for their formation in solutions, concentration parameters, and acidity at which the fraction of the monomers was maximal were determined. The constants of formation of the complexes and ion pair (IP) were estimated: K IP = 8 ± 3.5, K 1 ≈ 8, K 2trans ≈ 1, K 2cis ≈ 1, and K 3 ≈ 2.  相似文献   

3.
The cadmium O,O′-dethyl (I) and O,O′-di-sec-butyl phosphorodithioate (II) complexes have been synthesized and characterized in detail by 13C, 31P, and 113Cd CP/MAS NMR. X-ray crystallography shows that complex II has a binuclear molecular structure [Cd2{S2P(O-s-C4H9)2}4]. For 31P and 113Cd NMR signals, the chemical shift anisotropy δaniso and the asymmetry parameter η have been calculated. The 31P NMR signals are assigned to the terminal and bridging ligands in the complexes.  相似文献   

4.
A series of twist linear tetranuclear 3d–4f Co 2 III Ln 2 III [Ln = Gd (1), Tb (2), Dy (3), Ho (4), Er (5)] complexes have been prepared under solvothermal conditions and structurally characterized with Schiff-base ligand 2-(((2-hydroxy-3-methoxyphenyl)methylene)amino)-2-(hydroxymethyl)-1,3-propanediol (H4L). The two central Co ions are linked by two alkoxyl oxygen atoms, and one Ln ion lying above and the other below the Co–Co dimer, form a twist linear array. The magnetic susceptibility studies reveal antiferromagnetic or ferromagnetic behaviour, whilst dynamic magnetic studies indicate no slow magnetic relaxation for these complexes.  相似文献   

5.
(NH4)Sb4F13 crystals (I) are synthesized and their crystal structure (tetragonal crystal system: a = 9.6431(2) Å, c = 6.5503(2) Å, V = 609.11(3) Å3, Z = 2, d calc = 4.100 g/cm3, F(000) = 664, space group I4?) is determined. The main structural units of I are tetranuclear anionic [Sb4F13]? complexes and [NH4]+ cations. The anionic complexes are built of four SbF3 groups linked together by tetrahedral bridging fluorine atom. At room temperature the (NH4)Sb4F13 crystals are isostructural to previously studied МSb4F13 (М = K, Rb, Cs, and Tl). The study of 121,123Sb NQR spectra of compound I is performed in a range of 77-370 K, which shows that when the temperature decreases (<250 K) the substance exhibits piezoelectric properties, as do other compounds of this group, but with a violation of their isostructurality.  相似文献   

6.
The syntheses and crystal structures of the layered coordination polymers M(C8H8NO2)2 [M = Mn (1), Co (2), Ni (3) and Zn (4)] are described. These isostructural compounds contain centrosymmetric trans-MN2O4 octahedra as parts of infinite sheets; the ligand bonds to three adjacent metal ions in μ3-N,O,O′ mode from both its carboxylate O atoms and its amine N atom. In each case, weak intra-sheet N–H?O and C–H?O hydrogen bonds may help to consolidate the structure. Crystal data: 1, C16H16MnN2O4, M r = 355.25, monoclinic, P21/c (No. 14), a = 10.6534(2) Å, b = 4.3990(1) Å, c = 15.5733(5) Å, β = 95.1827(10)°, V = 726.85(3) Å3, Z = 2, R(F) = 0.026, wR(F 2) = 0.067. 2, C16H16CoN2O4, M r = 359.24, monoclinic, P21/c (No. 14), a = 10.6131(10) Å, b = 4.3374(4) Å, c = 15.3556(17) Å, β = 95.473(4)°, V = 703.65(12) Å3, Z = 2, R(F) = 0.041, wR(F 2) = 0.091. 3, C16H16N2NiO4, M r = 359.02, monoclinic, P21/c (No. 14), a = 10.6374(4) Å, b = 4.2964(2) Å, c = 15.2827(8) Å, β = 95.9744(14)°, V = 694.66(6) Å3, Z = 2, R(F) = 0.028, wR(F 2) = 0.070. 4, C16H16N2O4Zn, M r = 365.68, monoclinic, P21/c (No. 14), a = 10.6385(5) Å, b = 4.2967(3) Å, c = 15.2844(8) Å, β = 95.941(3)°, V = 694.89(7) Å3, Z = 2, R(F) = 0.038, wR(F 2) = 0.107.  相似文献   

7.
The reaction of cyclopentylamine with 2-hydroxy-1-naphthaldehyde and 5-nitrosalicylaldehyde, respectively, in methanol affords two new Schiff bases, 1-(cyclopentyliminomethyl)naphthalen-2-ol (HL1) and 4-nitro-2-(cyclopentyliminomethyl)phenol (HL2). Two new zinc(II) complexes, [Zn(L1)2] (I) and [Zn(L2)2] (II), derived from the Schiff bases, have been prepared and characterized by single-crystal X-ray diffraction, FT-IR, and elemental analysis. Complex I crystallizes in the monoclinic space group P21/c with a = 17.834(4), b = 14.738(3), c = 9.868(2) Å, β = 91.20(3)°, V = 2593.1(9) Å3, Z = 4. Complex II crystallizes in the triclinic space group P \(\bar 1\) with a = 10.206(1), b = 10.502(1), c = 12.554(1) Å, α = 66.771(2)°, β = 78.133(2)°, γ = 76.292(2)°, V = 1191.8(1) Å3, Z = 2. The Zn atom in each complex is coordinated by two N and two O atoms from two Schiff base ligands, forming a tetrahedral geometry. The Schiff bases and the complexes were assayed for antibacterial activities.  相似文献   

8.
The preparation of EnH2[IrCl6] is described. Crystal data for C2H10Cl6IrN2 are: a = 6.8972(11) Å, b = 6.9435(16) Å, c = 7.3354(11) Å; α = 88.269(3)°, β = 65.495(2)°, γ = 60.305(2)°, V = 270.76(9) Å3, space group P1, Z = 1, dcalc = 2.864 g/cm3. Crystal chemical analysis of the general motif of the structure was performed by the translation sublattice identification technique. It has been found that complex anions [IrCl6]2? follow the nodes of a rather regular rhombohedral subcell with the parameters ac = 7.1 Å, αc = 64°.  相似文献   

9.
The crystal structures of two polymorphs of molybdenyl salicylidene-2-furfuryliminate [MoO2(L1)2] have been solved by X-ray diffraction. Both complexes crystallize in centrosymmetric and non-centrosymmetric space groups (P21/c and Р21, respectively) of monoclinic system and have similar structures and close geometric parameters. The Мо atoms have a distorted octahedral coordination to two terminal oxo ligands in cis-positions to each other and two pairs of the oxygen atoms (cis- to О(oxo)) and the nitrogen atoms (trans- to О(oxo)) of two bidentate chelate ligands (L1).  相似文献   

10.
A potentiometric method has been used for the determination of the protonation constants of N-(2-hydroxyethyl)iminodiacetic acid (HEIDA or L) at various temperatures 283.15?≤?T/K?≤?383.15 and different ionic strengths of NaCl(aq), 0.12?≤?I/mol·kg?1?≤?4.84. Ionic strength dependence parameters were calculated using a Debye–Hückel type equation, Specific Ion Interaction Theory and Pitzer equations. Protonation constants at infinite dilution calculated by the SIT model are \( \log_{10} \left( {{}^{T}K_{1}^{\text{H}} } \right) = 8.998 \pm 0.008 \) (amino group), \( \log_{10} \left( {{}^{T}K_{2}^{\text{H}} } \right) = 2.515 \pm 0.009 \) and \( \log_{10} \left( {{}^{T}K_{3}^{\text{H}} } \right) = 1.06 \pm 0.002 \) (carboxylic groups). The formation constants of HEIDA complexes with sodium, calcium and magnesium were determined. In the first case, the formation of a weak complex species, NaL, was found and the stability constant value at infinite dilution is log10KNaL?=?0.78?±?0.23. For Ca2+ and Mg2+, the CaL, CaHL, CaL2 and MgL species were found, respectively. The calculated stability constants for the calcium complexes at T?=?298.15 K and I?=?0.150 mol·dm?3 are: log10βCaL?=?4.92?±?0.01, log10βCaHL?=?11.11?±?0.02 and \( \log_{10} \beta_{\text{Ca{L}}_{2}} \)?=?7.84?±?0.03, while for the magnesium complex (at I?=?0.176 mol·dm?3): log10βMgL?=?2.928?±?0.006. Protonation thermodynamic functions have also been calculated and interpreted.  相似文献   

11.
The structural features of 38 mononuclear d 2-Re(V) octahedral monooxo complexes (I–XXXVIII) with oxygen atoms of bidentate-chelating (O, P) ligands (L n ) are considered. The atoms O(L n ) are mostly in trans positions to O(oxo) ligands. In three compounds of general formula [ReO(Lmono)(L n )2] (XXXVI–XXXVIII), the O atoms of two L n ligands occupy both trans and cis positions to oxo ligands. In one complex, namely, in [ReO(L n )(L tri 11 )], n = 3 (XXXV), the atom O(L3) is in the cis position to the oxo ligand; the trans position to O(oxo) is occupied by the atom O(L tri 11 ).  相似文献   

12.
Covalent bonding in the complexes containing ns 1 ions of various metals was studied by EPR spectroscopy. Large series of octahedral, cubic, and cuboctahedral complexes of the 67Zn+(4s 1), 111Cd+(5s 1), 205Tl2+(6s 1), and 207Pb3+(6s 1) ions were analyzed in crystal structures like fluoroperovskite (KMgF3), fluoroantiperovskite (LiBaF3), fluorite (MF2) (where M = Ca, Sr, and Ba), and alkali metal halides. The parameters of hyperfine couplings and ligand hyperfine couplings were interpreted with regard to bond covalence and spin polarization.  相似文献   

13.
In this work, the optimization of a segregation method of 129I and 14C, two long-living radionuclides, main constituents of nuclear radioactive waste, has been developed. To be able to carry out this project, a fractional factorial experimental design was applied using 5 factors and 2 levels by factor (25–2). Only 8 experiments were necessary to identify the variables affecting the process, and very good recoveries of both radionuclides were obtained: (94?±?2)% for 129I, and (99?±?1)% for 14C. The segregation of 129I was influenced by flow (Q), volume of H2SO4 (VH+), and carriers (CR), while VH+ and time (t) played a major role in the segregation of 14C.  相似文献   

14.
The thermodynamic characteristics of complexation between ethylenediamine-N,N'-disuccinic acid (H4Y; EDDA) and Ho3+ ion were determined calorimetrically and potentiometrically at 298.15 K and ionic strengths of 0.1, 0.5, 1.0, and 1.5 (KNO3). The logK, ΔrG, ΔrH, and ΔrS values for the formation of HoY and HOHY complexes were calculated at the studied and zero ionic strength values. The changes in thermodynamic parameters of the reactions are discussed.  相似文献   

15.
Ferrites of composition ErMIFe2O5 (MI = Li, Na, K, Cs) were synthesized by a solid-phase method. The structure of the ferrites was for the first time studied by X-ray powder diffraction. Crystal systems, unit cell parameters, and X-ray and pycnometric densities were determined. For ErLiFe2O5, a = 10.510 Å, c = 14.270 Å, V°= 1616.16 Å3, Z = 16, V subcell ° = 101.01 Å3, ρx = 6.01 g/cm3, ρpyc = 5.97 ± 0.04 g/cm3; for ErNaFe2O5, a = 10.519 Å, c = 15.510 Å, V° = 1759.56 Å3, Z = 16, V subcell ° = 109.90 Å3, ρx = 5.77 g/cm3, ρpyc = 5.72 ± 0.08 g/cm3; for ErKFe2O5, a = 11.050 Å, c = 15.480 Å, V° = 1937.33 Å3, Z = 16, V subcell ° = 121.08 Å3, ρx = 5.46 g/cm3, ρpyc = 5.41 ± 0.04 g/cm3; and for ErCsFe2O5, a = 10.78 Å, c = 16.01 Å, V° = 1905.37 Å3, Z = 16, V subcell ° = 119.09 Å3, ρx = 6.86 g/cm3, ρpyc = 6.61 ± 0.01 g/cm3.  相似文献   

16.
Two isomeric dibenzofuran carboxaldehydes, namely 2-methoxydibenzo[b,d]furan-1-carbaldehyde (4) and 2-methoxydibenzo[b,d]furan-3-carbaldehyde (5), were synthesized. Formylation of 2-methoxydibenzo[b,d]furan (3) with α,α-dichloromethyl methyl ether and tin(IV) chloride gave a mixture of aldehydes 4 and 5 in 95 % yield and in a 35:65 ratio. Their 1H and 13C NMR spectral signals were not sufficiently resolved in CDCl3 solution to achieve their complete assignment, but this was possible in DMSO-d 6 with the help of 2D-NMR techniques: NOESY for 1H–1H interactions and HSQC and HMQC experiments for 1H–13C correlations. These aldehydes were used in the synthesis of novel β-phenylethylamines and NBOMe derivatives, which are undergoing biological evaluation.  相似文献   

17.
Structural characteristics and energies of [UO2Cl4(BMIm)n](n–2)+ (n = 1-4) solvation complexes have been studied by the density functional theory (DFT) method in the SVWN5 local functional approximation.  相似文献   

18.
The compounds AMMgE(PO4)3 (A = Na, K, Rb, Cs; M = Sr, Pb, Ba; E = Ti, Zr) were synthesized by the sol–gel procedure followed by heat treatment and studied by X-ray diffraction, differential thermal and electron microprobe analysis, and IR spectroscopy. The phosphates crystallize in the kosnarite (KZr2(PO4)3, space group \(R\bar 3\)) and langbeinite (K2Mg2(SO4)3, space group P213) structural types. The structure of KPbMgTi(PO4)3 was refined by full-profile analysis (space group P213, Z = 4, a = 9.8540(3) Å, V = 956.83(4) Å3). The structure is formed by a framework of vertex-sharing MgO6 and TiO6 octahedra and PO4 tetrahedra. The K and Pb atoms fully occupy the extra-framework cavities and are coordinated to nine oxygen atoms. A variable-temperature X-ray diffraction study of KPbMgTi(PO4)3 showed that the compound expands isotropically and refer to medium-expansion class (linear thermal expansion coefficients α a = α b = α c = 8 × 10–6°C–1). The number of stretching and bending modes of the PO4 tetrahedron observed in the IR spectra is in agreement with that predicted by the factor group analysis of vibrations for space groups \(R\bar 3\) and P213. A structural transition from the cubic langbeinite to the rhombohedral kosnarite was found for CsSrMgZr(PO4)3. In the morphotropic series of ASrMgZr(PO4)3 (A = Na, K, Rb, Cs) the kosnarite–langbeinite transition occurs upon the Na → K replacement. The effect of the sizes and electronegativities of cations combined in AMMgE(PO4)3 on the change of the structural type was analyzed.  相似文献   

19.
The reaction of N-methyl-N-trimethylsilylacetamide with silanes ClCH2SiR1R2Cl (R1, R2 = H, Me; H, Ph; Ph2) leads to the formation of (O→Si) chelate compounds with pentacoordinate silicon: N-[chloro(methyl)-silyl]methyl-, N-[chloro(phenyl)silyl]methyl-, and N-[chloro(diphenyl)silyl]methyl-N-methylacetamides. From the data of multinuclear NMR spectroscopy, the intermediates of the reaction of N-methyl-N-trimethylsilylacetamide with ClCH2SiPhHCl and ClCH2SiPh2Cl are stable in CDCl3 solution at room temperature during several days and slowly rearrange to the final (O–Si) chelate compounds.  相似文献   

20.
Results of measurements of the yield of Nd3+ radioluminescence photons in inorganic laser liquids POCl3-MCln-235UO 2 2+ -Nd3+ (M = Ti, Zr, Sn, or Sb) during homogeneous excitation by uranium α-particles are presented. It was found that the intensity of radioluminescence corresponding to the 4 F 3/24 I 11/2 transition in neodymium ions depends on the solvent composition. Data on the radiation-chemical yield, G, of excited neodymium ions in the POCl3-MCln-235UO 2 2+ -Nd3+ (M = Ti, Zr, Sn, or Sb) system were obtained. At a neodymium concentration of 0.25 mol/l, the values of G for the excited ions were 0.60 ± 0.10, 0.84 ± 0.10, 1.20 ± 0.10, and 1.64 ± 0.16 ion/100 eV in solutions with TiCl4, ZrCl4, SnCl4, and SbCl5, respectively. The maximum yields of excited ions estimated at G = 1.68 ± 0.10 and 2.20 ± 0.24 ion/100 eV were obtained for the solutions with SnCl4 and SbCl5, respectively, at neodymium ion concentrations above 0.4 mol/l.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号