首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Three Oxidation Paths of [Ta6Cl12]2+ ([Ta6Br12]2+ and [Nb6Cl12]2+) [Ta6Cl12]2+ is oxidized autocatalytically to [Ta6Cl12]4+ by HNO3. The titration of [Ta6Cl12]2+ with KBrO3 (in HBr-containing solutions) or with Ce4+ or K2Cr2O7 (in HNO3-containing solutions) leads to a clear [Ta6Cl12]3+ step. The further titration leads beside [Ta6Cl12]4+ to the formation of Ta2O5(· xH2O). [Ta6Cl12]2+ behaves with KBrO3(+ HBr) equally, but the formation of [Ta2O5](· xH2O) is only small. [Nb6Cl12]2+ (22°C) titrated with Ce(ClO4)4 in 2n HClO4 gives the first potential step nearby exact ([Nb6Cl12]3+) and at a very slow titration in a second step a precipitation of Nb2O5(· xH2O) occurs, which adsorbed Ce4+ additionally. At ?15°C with Ce(ClO4)4 the first potential step was exactly at [Nb6Cl12]2+→3+, while the second step needs a distinct additional consumption of titer. (Formation of [Nb6Cl12]4+ and beside it [Nb2O5](· xH2O)). From the titration curves and sections of its normal progress in all cases we get the normal potentials 2+/3+ and 3+/4+ with an accuracy of ± 0.01 volt. In alkaline solution the complexes are oxidized with air-oxygen to [M6X12](OH)62?, while the Br-containing complexes suffer hydrolysis afterwards.  相似文献   

3.
We discuss the electronic structure, bonding and physical properties of the gold cluster compound Au55(PPh3)12Cl6. Results from our experimental measurements, including EXAFS, specific heat, Mössbauer, UV-visible and photoelectron spectroscopy, are combined with those of other work to form a consistent physical picture of the system. The bonding in Au55(PPh3)12Cl6 is much more delocalised and non-directional than in smaller gold cluster molecules. The Au55 cluster exhibits a substantial degree of metallic bonding, while displaying some of the characteristics of a discrete energy level spectrum.  相似文献   

4.
New compounds of the general formula A4[Nb6Cl12(NCS)6](H2O)4 (A = K, Rb, NH4) were synthesized from Nb6Cl14 and ASCN in aqueous solutions. X-ray structure refinements were performed on single-crystal data of the three compounds. They are isotypic and crystallize with the space group P1 (Z = 1) and the lattice parameters: a = 877.9(3) pm, b = 1176.6(3) pm, c = 1187.0(3) pm, α = 114.29(1)°, β = 98.96(2)°, γ = 100.91(2)° for K4[Nb6Cl12(NCS)6](H2O)4 ( 1 ); a = 887.6(3) pm, b = 1184.0(4) pm, c = 1195.4(4) pm, α = 114.95(2)°, β = 98.84(2)°, γ = 101.31(2)° for Rb4[Nb6Cl12(NCS)6](H2O)4 ( 2 ) and a = 886.0(4) pm, b = 1181.1(6) pm, c = 1183.9(6) pm, α = 114.49(2)°, β = 99.48(3)°, γ = 101.53(1)° for (NH4)4[Nb6Cl12(NCS)6](H2O)4 ( 3 ). Each centrosymmetric [Nb6Cl12(NCS)6]4? ion of the isotypic compounds contains six terminal thiocyanate groups being bound to the corners of the octahedral niobium cluster through the nitrogen atoms (dNb? N = 221.5(6)–224.3(6) pm, bond angles Nb? N? C 168.6(5)–176.4(6)°). The [Nb6Cl12(NCS)6]4? ions are linked via A? S and A? Cl interactions with the A cations. Half of the cations occur to be disordered along two crystallographic sites.  相似文献   

5.
6.
The electronic ground state of [Nb6Cl12]4+ is calculated using a one-center-model. One obtains the observed diamagnetic character.  相似文献   

7.
8.
9.
10.
11.
A polymeric hybrid cluster-based compound with a double-layered honeycomb framework built of octahedral niobium cyanochloride clusters and [Zn(en)]2+ metal complexes was designed and synthesized at room temperature, and structurally characterized by single crystal X-ray diffraction.  相似文献   

12.
A new, fast, and straightforward synthetic route for the new cluster compound [Nb(6)Cl(i)(12)(CH(3)OH)(a)(4)Cl(a)(2)].6CH(3)OH, taking advantage of the special solubility properties of tetracyanoborate salts has been established, and the single-crystal X-ray structure of this compound, which is a promising starting material for new cluster phases, has been determined.  相似文献   

13.
The new niobium oxychloride cluster compound, Cs2Ti4Nb6Cl18O6, was obtained by solid-state synthesis techniques in the course of our systematic investigation of metal oxychloride systems aimed at the preparation of low-dimensional cluster compounds. Cs2Ti4Nb6Cl18O6 crystallizes in the trigonal system, with unit cell parameters a= 11.1903(7), c = 15.600(2) A, space group P3bar1c, Z = 2. Its crystal structure was determined by single-crystal X-ray diffraction techniques. The full-matrix least-squares refinement against F(2) converged to R(1) = 0.048 (F(o) > 4sigma(F(o))), wR(2) = 0.069 (all data). The structure is based on an octahedral cluster unit (Nb6Cl(i)6O(i)6)Cl(a)6 in which the six edge-bridging oxide ligands are arranged in two sets of three on opposite sides of the Nb6 octahedron. Ti(3+) ions link the clusters through O(i) and Cl(a) ligands to form linear chains running along the c axis. The location of titanium ions correlates with the arrangement of oxide ligands around the Nb6 metal core. The chains interact with each other through additional Ti(3+) and Cs(+) ions. Interchain interactions are significantly weaker than intrachain interactions, resulting in a quasi-one-dimensional character of the overall structure.  相似文献   

14.
15.
《Solid State Sciences》1999,1(7-8):637-646
The Nb6 oxychlorides based on Nb6L18 units that we have isolated, as well as another one recently reported in the literature, are reviewed. Each of them is structurally described through a relevant example: Cs2LuNb6Cl17O, Cs2UNb6Cl15O3, ScNb6Cl13O3, Ti2Nb6Cl14O4 and KLu3Nb6Cl15O6, the structure of the latter has just been solved. They are discussed by comparison with the Nb6 chlorides and Nb6 oxides, considering the electronic and steric evolution of the Nb6L18 unit upon increasing O/C1 ratio. The environments of the trivalent cations will be compared, specially those involving extra halogens in KLu3Nb6Cl15O6 and Ti2Nb6Cl14O4.  相似文献   

16.
We have investigated the possibility of altering the electronic configuration of the niobium oxochloride cluster compound Ti2Nb6Cl14O4 (I) by doping this material with monovalent cations that can fit into cavities present in its cluster framework. The doping of I with In+ and Tl+ ions resulted in the formation of MxTi2Nb6Cl14-xO4+x (M = In, x = 0.10, 0.20, 0.27; M = Tl, x = 0.10, 0.20) in which the M+ ions partially occupy these cavities. The crystal structure analysis indicated that the additional charge provided by M+ ions is compensated by substitution of chlorine by oxygen, which leads to the cluster electronic configuration being intact. Crystal data: In0.272Ti2Nb6Cl13.728O4.272, space group C2/c (No. 15), a = 12.679(2) A, b = 14.567(2) A, c = 12.632(3) A, beta = 95.26(2) degrees, Z = 4; Tl0.196Ti2Nb6Cl13.804O4.196, space group C2/c (no. 15), a = 12.732(1) A, b = 14.607(2) A, c = 12.662(2) A, beta = 95.28(1) degrees, Z = 4.  相似文献   

17.
18.
Mass Spectra of Pd6Cl12, Pt6Cl12, and PdnPt6?nCl12 Pd6Cl12, and Pt6Cl12 and both together are volatilised in a mass spectrometer. 3 Cl and 1 Pd have approximately the same mass, therefore isotopes of Pd and Pt are used (108Pd, 194Pt). With an ionisation energy of 50 eV part of the vapourised molecules is strongly fragmented. With a lower ionisation energy the molecule ions Pd6Cl12+, Pt6Cl12+ and PdnPt6?nCl12+ are only observed.  相似文献   

19.
20.
About Ba6Ru2PtO12Cl2 Single crystals of Ba6Ru2PtO12Cl12 were prepared by a BaCl2 flux and investigated by X-ray methods (D? P3 M1; a = 5,805; c = 15.006 Å; Z = 1). The characteristic face shared M3O12-octahedratriples show an ordered (Ru/Pt/Ru) occupation. Calculation of the Coulomb term of lattice energy support the charge distribution (5+/4+/5+) ions engage three point sites with different coordinations. The connection to other compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号