首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
本文以相变微胶囊复合板隔热组件为研究对象,基于焓法方程建立了蓄热/隔热型耦合相变传热数值模型,预测了板内的温度分布、相界面移动等响应特征,系统地分析了Stefan数及相变温度区间对传热的影响。结果表明:相变微胶囊板内固相界面的移动速度大于液相界面,固相界面消失后,液相界面移动明显加速;固、液相界面移动速度随Stefan数的增大而增快,同时板内整体温度水平升高;固相界面移动速度随着相变温度区间的增大而增快,但相变温度区间对相变材料完全熔化所需时间影响不大。  相似文献   

2.
本文采用原位聚合法以氧化石墨烯物理改性密胺树脂为壳材,包覆石蜡制备石蜡@密胺树脂/氧化石墨烯相变微胶囊。石蜡@密胺树脂/氧化石墨烯复合相变微胶囊在保存了石蜡高储能密度的同时有效防止了石蜡泄漏,并且提高了其导热性。当质量分数ω为6%时,导热系数为1.25 W·m-1·K-1,提高了7.8倍,潜热略有降低,潜热焓值为185.4 J·g-1,包覆率为70.4%。将制备的改性微胶囊进行防泄漏测试研究,展现出优异的热稳定性能。  相似文献   

3.
为得到混合熔盐在单罐蓄热系统内的相变传热规律,本文针对具有低熔点的四元混合硝酸盐展开研究,采用VOF与焓-多孔介质耦合模型对底部加热条件下蓄热单元内相变材料(PCM)的相变蓄热过程进行模拟,并利用实验进行验证。结果表明:相变过程中罐内出现明显温度分层现象,固液界面出现波动。蓄热单元中所产生的自然对流强弱直接影响热量传递,同时固液相界面的位置决定自然对流的发展。本文研究结果对相变材料的高效利用与单罐蓄热系统的优化提供理论依据。  相似文献   

4.
有限厚度冻冰相变过程的传热研究   总被引:3,自引:0,他引:3  
1前言确定相界面的瞬态位置是求解冻冰相变问题的重要部分。目前对于有限区域相变问题还没有可靠的精确解[1]。冻冰过程最简单分析方法是忽略固液两相的显热变化,建立相界面移动的准稳态传热关系式,近似预测固一液相变位置[2-4]。本文将考虑液、固相中显热的变化,对有限厚平板冻冰过程,采用精确解与积分解相结合的方法,分析冰层冻结过程中的固一液相界面、边界热流密度和贮入固、液相内的冷量随冻冰时间的变化规律。2物理一数学模型分析该研究的问题是一块贮冷板的两侧面直接与一个低温蒸发器直接接触,使贮冷板内冻冰贮冷。通常蒸发器…  相似文献   

5.
相变材料微胶囊流体相变过程对储热蓄热影响   总被引:1,自引:0,他引:1  
用石蜡混合物(以C_(19)H_(40)为主体,相变温度:25~38℃,比热容极大值出现在31.5℃左右)作芯材,树脂材料作囊壁,与水混合制备成微纳米胶囊流体,将其填充在矩形密闭容器内,在下表面加热,其余各表面绝热条件下,对相变材料相变化过程的储热蓄热特性进行分析。结果表明,相变材料相变化过程提前了自然对流的启动时间,加强了换热强度;在蓄热温度超过35℃之前,相变化的促进作用随温度增加而逐渐增强,超过35℃以后,相变化的促进作用开始减弱.  相似文献   

6.
微胶囊化相变悬浮液层流传热强化的参数分析   总被引:1,自引:0,他引:1  
通过对微胶囊相变悬浮液管内层流恒热流对流换热的数学建模和模拟计算,获得在恒热流加热边界条件下,不同参数匹配时相变糊状区的确切范围以及固液相变两条相界面的数值结果。利用该模型对影响悬浮型固液两相流传热特性的诸多参数进行了比较细致的定量分析,这些参数包括固相体积浓度、斯蒂芬(Ste)数、粒径比、无量纲相变温度区间宽度以及无量纲过冷度等。分析和模拟计算的结果显示微胶囊浓度和斯蒂芬数对管内层流传热具有最重要的影响。  相似文献   

7.
韦小坡  陈威 《低温与超导》2022,(4):75-80+100
为了提高微通道热沉的水力性能和热力性能,采用等效比热容法对相变微胶囊悬浮液在固体肋和多孔肋微通道热沉内的流动与传热特性进行研究。结果表明:多孔肋可以使微通道热沉的压降显著降低,对热阻的影响随微通道内冷却剂流动距离变化。相变微胶囊悬浮液相变吸收潜热可以减小微通道热沉的热阻,但是粘度增大使得压降增大。多孔肋和相变微胶囊悬浮液都能提高微通道热沉的综合性能,相变微胶囊悬浮液在多孔肋微通道热沉中比水在固体肋微通道热沉中的综合性能提高了14%。  相似文献   

8.
9.
对一种应用于工业炉的蓄热器、太阳能中央接受塔的储能系统微米级颗粒度下含有无机盐的陶瓷多孔材料的熔化加热过程进行理论研究,在研究中考虑陶瓷基体和无机盐热物性、空隙率和融盐汽化率的影响。计算结果表明,较大的陶瓷骨架孔隙率和相变潜热、较小的导热系数造成温度和固液界面位置的变化变慢,但对气相界面的生成和移动影响不大。  相似文献   

10.
本文建立了肿瘤组织多孔介质冻融相变传热的数学模型.采用显热容法研究模拟了冷热交替治疗过程中肿瘤组织中温度场分布以及冰晶增长和融化过程.研究结果表明,当冷刀进入组织以后,组织内会产生冰晶的生长.当冷刀的温度上升时,开始时在冷刀侧附近冰晶融化,出现一个冰晶融化的相界面;随着冷刀温度的上升,逐步出现两个冰晶融化的相界面.血液灌注率的存在使组织冻结速度变慢.  相似文献   

11.
1引言随着激光加工技术的发展以及太空高新性能材料探索,具有自由表面的固液相变问题倍受关注[1]。由于从上方加热熔化问题,熔池内不易产生自然对流,因此常忽略了对流,传导作为唯一传热机理。但自由表面由于有温度梯度,势必存在Marangoni流的作用[2],其结果可能将与传导模型有很大差别。本文将针对这类过程,考察浮升力、表面张力对固液界面的形状、位置及熔池流场的影响。计算中将固相、液相分开,分别采用相应的数学物理方程解决,边界通过移动边界能量守衡方程进行处理,揭示表面张力在熔化过程中的作用及影响。2数学描述与计算方…  相似文献   

12.
提出应用3ω谐波探测技术进行脲醛树脂-石蜡相变微胶囊的等效热导率测量方法。测试了跨越相变温度区间的微胶囊等效热导率,分析了等效热导率随温度的变化关系。在其相变温度区间内,热导率存在极大值,该极值点对应的温度与其相变温度峰值一致。同样温度下,降温时的等效热导率略小于升温,这主要是由降温时相变材料的过冷引起。  相似文献   

13.
基于相变材料(PCM,phase change material)的相变储能设备具有储能密度高的特点。本文建立了基于相变储能元件伪焓模型的固液相变格子Boltzmann模型,研究了内部管道位置、方腔倾斜角度对PCM融化过程的影响规律。结果表明,在内管道靠近方腔上部时,由于上部界面(固液相变界面或上壁面)对自然对流阻碍作用,使PCM的融化速率减慢。但是,在此时使方腔发生倾斜,会改变管道热流体到上部界面的距离,强化PCM的热质传递过程,使融化加快。  相似文献   

14.
15.
微胶囊相变蓄能技术研究现状与进展   总被引:1,自引:0,他引:1  
杨帆  方贵银  邢琳 《低温与超导》2006,34(5):386-389
微胶囊相变材料是一种新型的复合相变蓄能材料。文中介绍了微胶囊相变蓄能材料的性质,着重阐述了微胶囊相变蓄能材料的制备方法,并分析了微胶囊相变蓄能材料在工业领域的应用,总结了微胶囊相变蓄能材料的发展趋势。  相似文献   

16.
泡沫金属内相变材料融化传热过程的数值模拟   总被引:6,自引:0,他引:6  
以泡沫金属为基体,孔隙中填充相变材料能有效改善相变传热性能.考虑金属骨架与流体之间的不同的传热特性,建立了泡沫金属内融化相变传热的双温度模型.运用显热容法模拟了泡沫铝内融化相变的温度分布与流场.计算结果显示对比纯相变材料,加入泡沫铝能显著强化传热性能.固体骨架与储能材料之间在其相变时有较大的温差.  相似文献   

17.
含湿毛细多孔介质干燥过程相变传热传质分析   总被引:10,自引:0,他引:10  
分析了含湿毛细多孔介质干燥过程的主要机理,建立了以液相饱和度、温度和气体压力为参数的一维数学模型, 采用全隐式有限差分方法对该模型进行了数值计算。计算结果表明,干燥过程可分为两个阶段:不稳定阶段和稳定阶段。 在不稳定阶段,模拟参数变化剧烈,而在稳定阶段,模拟参数变化平稳。  相似文献   

18.
为了强化相变蓄热器传热性能,本文设计了三种新型壳管相变蓄热器结构,并对其换热性能进行实验研究.结果表明:在蓄热器内部添加分层结构和斜翅片换热性能最高,内部温度达到均匀化的时间随换热单元数增加而增大;换热管道间翅片的添加可有效地强化换热效果,改善蓄热器内部出现的温度严重分层现象,温度分布更加均匀;在研究范围内,换热流体温...  相似文献   

19.
相变乳状液的流变和传热性能研究   总被引:17,自引:2,他引:17  
针对新型O/W相变乳状液的非牛顿流变特性和在园管中发生相变前后的传热性能进行了测试和分析,所得结果表明它作为一种全新的蓄冷介质在对流传热方面具有性能优势.对经测试得出的乳状液主要流变参数随乳液浓度和温度的变化规律以及它在管内的对流传热特性作了分析和讨论,为新型实用蓄冷装置的设计提供了基本的依据.  相似文献   

20.
平板热管相变传热特性的实验研究   总被引:1,自引:0,他引:1  
平板热管具有很好的均热性,能够避免电子器件散热时热点的产生,使热沉具有更好的散热效果.为了研究平板热管的相变传热特性,制作了可视化平板热管,通过实验研究了加热功率、冷却风速、不同工质对平板热管性能的影响.同时,还研究了槽道结构对平板热管内部沸腾换热的强化作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号