共查询到20条相似文献,搜索用时 0 毫秒
1.
V. Sturm H.-U. Schmitz T. Reuter R. Fleige R. Noll 《Spectrochimica Acta Part B: Atomic Spectroscopy》2008
Samples taken from the liquid slag layer in a vacuum degasser station of a steel works are analyzed after solidification by laser-induced breakdown spectroscopy (LIBS) without any further sample preparation. The mass fractions of the major components of the vacuum slags are in the range of 50–60% for CaO, 0.5–12% for SiO2 and 20–40% for Al2O3. The species are distributed heterogeneously in the solid samples having diameters of 35 mm. Furthermore the color and structure of the samples is varying significantly. A fast spatial averaging of representative sample areas is realized by spatial laser beam shaping. Multivariate calibration and its validation is carried out with calibration and validation sets of production samples which are analyzed by X-ray fluorescence measurements or as borate beads for reference. The laser-induced breakdown spectroscopy instrument is installed in the steel works at a distance of about 10 m from the vacuum degasser. The laser-induced breakdown spectroscopy analysis runs automatically after the sample placement and it takes 80 s including data transfer to the host computer of the steel works. Operational tests are carried out to demonstrate the feasibility of a fast slag analysis in the harsh environment of the vacuum degasser plant. 相似文献
2.
The suitability of laser-induced breakdown spectroscopy (LIBS) for the characterization of jewellery products is demonstrated by the development of a method based on the use of an Nd-YAG laser (operating at 532 nm) which induces ablation of the material and the production of a plasma whose emission reaches 1/8 m spectrograph (connected to a coupled charge detector (CCD)) through an optic fiber. The treatment of the instrumental signal provides enough analytical information, both for identifying and quantifying the major metals present in this type of material. The method proposed has been developed both by multivariate optimization and calibration procedures with application of the appropriate quality criteria. The chemometric analysis of the data and the use of PLS regression for calibration guarantee the ruggedness of the proposed method. The study of the emission spectra allows characterization of the most common noble metals (gold and silver) as well as other metals present in jewellery pieces. 相似文献
3.
As applications for laser-induced breakdown spectroscopy (LIBS) become more varied with a greater number of field and industrial LIBS systems developed and as the technique evolves to be more quantitative that qualitative, there is a more significant need for LIBS systems capable of analysis with the use of a single laser shot. In single-shot LIBS, a single laser pulse is used to form a single plasma for spectral analysis. In typical LIBS measurements, multiple laser pulses are formed and collected and an ensemble-averaged method is applied to the spectra. For some applications there is a need for rapid chemical analysis and/or non-destructive measurements; therefore, LIBS is performed using a single laser shot. This article reviews in brief several applications that demonstrate the applicability and need for single-shot LIBS. 相似文献
4.
Juraj Jasik Johannes Heitz Johannes D. Pedarnig Pavel Veis 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009,64(10):1128
Laser-induced breakdown spectroscopy (LIBS) in the vacuum ultraviolet range (VUV, λ < 200 nm) is employed for the detection of trace elements in polyethylene (PE) that are difficult to detect in the UV/VIS range. For effective laser ablation of PE, we use a F2 laser (wavelength λ = 157 nm) with a laser pulse length of 20 ns, a pulse energy up to 50 mJ, and pulse repetition rate of 10 Hz. The optical radiation of the laser-induced plasma is measured by a VUV spectrometer with detection range down to λ = 115 nm. A gated photon-counting system is used to acquire time-resolved spectra. From LIBS measurements of certified polymer reference materials, we obtained a limit of detection (LOD) of 50 µg/g for sulphur and 215 µg/g for zinc, respectively.The VUV LIBS spectra of PE are dominated by strong emission lines of neutral and ionized carbon atoms. From time-resolved measurements of the carbon line intensities, we determine the temporal evolution of the electronic plasma temperature, Te. For this, we use Saha–Boltzmann plots with the electron density in the plasma, Ne, derived from the broadening of the hydrogen H-α line. With the parameters Te and Ne, we calculate the intensity ratio of the atomic sulphur and carbon lines at 180.7 nm and at 175.2 nm, respectively. The calculated intensity ratios are in good agreement with the experimentally measured results. 相似文献
5.
Jennifer L. Gottfried Russell S. Harmon Frank C. De Lucia Jr. Andrzej W. Miziolek 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009,64(10):1009
A large suite of natural carbonate, fluorite and silicate geological materials was studied using laser-induced breakdown spectroscopy (LIBS). Both single- and double-pulse LIBS spectra were acquired using close-contact benchtop and standoff (25 m) LIBS systems. Principal components analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were used to identify the distinguishing characteristics of the geological samples and to classify the materials. Excellent discrimination was achieved with all sample types using PLS-DA and several techniques for improving sample classification were identified. The laboratory double-pulse LIBS system did not provide any advantage for sample classification over the single-pulse LIBS system, except in the case of the soil samples. The standoff LIBS system provided comparable results to the laboratory systems. This work also demonstrates how PCA can be used to identify spectral differences between similar sample types based on minor impurities. 相似文献
6.
Tereza Ctvrtnickova Mari-Paz Mateo Armando Yaez Gines Nicolas 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009,64(10):1093
The high sensitivity of laser-induced breakdown spectroscopy (LIBS) for the detection of most of the fly ash components enables the analysis of these residues produced during the combustion of coal. Fly ash consists of oxides (SiO2, Al2O3, Fe2O3, CaO…) and unburnt carbon which is the major determinant of combustion efficiency in coal fired boilers. For example, an excessive amount of residual carbon dispersed in the fly ash means a significant loss of energy (Styszko et al., 2004 [1]). Standard methods employed for the analysis of fly ash make not possible a control of boiler in real time. LIBS technique can significantly reduce the time of analysis, in some cases even an online detection can be performed. For this reason, some studies have been addressed in order to demonstrate the capability of the laser-induced breakdown spectroscopy technique for the detection of carbon content in high pressure conditions typical of thermal power plants (Noda et al., 2002 [2]) and for the monitoring of unburnt carbon for the boiler control in real time (Kurihara et al., 2003[3]).In particular, the content of unburnt carbon is a valuable indicator for the control of fly ash quality and for the boiler combustion. Depending on this unburnt carbon content, fly ash can be disposed as an industrial waste or as a raw material for the production of concrete in the construction sector. In this study, analyses were performed on specimens of various forms of preparation. Pressed pellets were prepared with two different binders. Presented results concern the nature and amount of the binder used to pelletize the powder, and the laser-induced breakdown spectroscopy parameters and procedure required to draw calibration curves of elements from the fly ash. Analysis “on tape” was performed in order to establish the experimental conditions for the future “online analysis”. 相似文献
7.
De Giacomo A Dell'Aglio M Casavola A Colonna G De Pascale O Capitelli M 《Analytical and bioanalytical chemistry》2006,385(2):303-311
Double-pulse laser-induced plasma spectroscopy (DP-LIPS) is applied to submerged targets to investigate its feasibility for
elemental analysis. The role of experimental parameters, such as inter-pulse delay and detection time, has been discussed
in terms of the dynamics of the laser-induced bubble produced by the first pulse and its confinement effect on the plasma
produced by the second laser pulse. The analytical performance of this technique applied to targets in a water environment
are discussed. The elemental analysis of submerged copper alloys by DP-LIPS has been compared with conventional (single-pulse)
LIBS in air. Theoretical investigation of the plasma dynamics in water bubbles and open air has been performed. 相似文献
8.
Dheerendra Yadav Varun Gupta Raj K. Thareja 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009,64(10):986-992
The temporal evolution and spatial distribution of C2 molecules produced by laser ablation of a graphite target is studied using optical emission spectroscopy, dynamic imaging and laser-induced fluorescence (LIF) investigations. We observe peculiar bifurcation of carbon plume into two parts; stationary component close to the target surface and a component moving away from the target surface which splits further in two parts as the plume expands. The two distinct plumes are attributed to recombination of carbon species and formation of nanoparticles. The molecular carbon C2 moves with a faster velocity and dies out at ~ 800 ns whereas the clusters of nanoparticle move with a slower velocity due to their higher mass and can be observed even after 1600 ns. C2 molecules in the d3Πg state were probed for laser-induced fluorescence during ablation of graphite using the Swan (0,0) band at 516.5 nm. The fluorescence spectrum and images of fluorescence d3Πg − a3Πu(0,1)(λ = 563.5 nm) are recorded using a spectrograph attached to the ICCD camera. To get absolute ground state C2 density from fluorescence images, the images are calibrated using complimentary absorption experiment. This study qualitatively helps to get optimum conditions for nanoparticle formation using the laser ablation of graphite target and hence deducing optimum conditions for thin film deposition. 相似文献
9.
The paper describes past and present efforts in modeling of laser-induced plasma and overviews plasma diagnostics carried out by pump-probe techniques. Besides general information on existing plasma models, the emphasis is given to models relevant to spectrochemical analysis, i.e. models of radiating plasma. Special attention is paid to collisional-radiative (CR) and collisional-dominated (CD) plasma models where radiative processes play an important role. Also, calibration-free (CF) models are considered which may endow with the possibility for standardless spectroscopic analysis. In the diagnostic part, only methods based on the use of additional diagnostic tools (auxiliary lasers, optics, and probes) are described omitting those based on plasma own radiation. A short review is provided on image-based diagnostics (shadowgraphy, schlieren, and interferometry), absorption and fluorescence, Langmuir probe, and less frequently used cavity ringdown and Thomson scattering methods. 相似文献
10.
Parametric study of a fiber-optic laser-induced breakdown spectroscopy probe for analysis of aluminum alloys 总被引:2,自引:0,他引:2
Awadhesh K. Rai Hansheng Zhang Fang Yu Yueh Jagdish P. Singh Arel Weisburg 《Spectrochimica Acta Part B: Atomic Spectroscopy》2001,56(12):963-2383
In the present work we demonstrate a fiber-optic laser-induced breakdown spectroscopy (FO LIBS) system for delivering laser energy to a sample surface to produce a spark as well as to collect the resulting radiation from the laser-induced spark. In order to improve the signal/background (S/B) ratio, various experimental parameters, such as laser energy, gate delay and width, detector gain, lenses of different focal lengths and sample surface, were tested. In order to provide high reliability and repeatability in the analysis, we also measured plasma parameters, such as electron density and plasma temperature, and determined their influence on the measurement results. The performance of FO LIBS was also compared with that of a LIBS system that does not use a fiber to transmit the laser beam. LIBS spectra with a good S/B were recorded at 2-μs gate delay and width. LIBS spectra of six different Al alloy samples were recorded to obtain calibration data. We were able to obtain linear calibration data for numerous elements (Cr, Zn, Fe, Ni, Mn, Mg and Cu). A linear calibration curve for LIBS intensity ratio vs. concentration ratio reduces the effect of physical variables (i.e. shot-to-shot power fluctuation, sample-to-surface distance, and physical properties of the samples). Our results reveal that this system may be useful in designing a high-temperature LIBS probe for measuring the elemental composition of Al melt. 相似文献
11.
M.T. Taschuk Y. Godwal Y.Y. Tsui R. Fedosejevs M. Tripathi B. Kearton 《Spectrochimica Acta Part B: Atomic Spectroscopy》2008
A quantitative comparison of the performance of four different laser-induced breakdown spectroscopy detection systems is presented. The systems studied are an intensified photodiode array coupled with a Czerny–Turner spectrometer, an intensified CCD coupled with a Czerny–Turner spectrometer, an intensified CCD coupled to an Echelle spectrometer, and a prototype multichannel compact CCD spectrometer system. A simple theory of LIBS detection systems is introduced, and used to define noise-equivalent spectral radiance and noise-equivalent integrated spectral radiance for spectral detectors. A detailed characterization of cathode noise sources in the intensified systems is presented. 相似文献
12.
An intensive multi-disciplinary research effort is underway at Wayne State University to synthesize and characterize magnetic nanoparticles in a biocompatible matrix for biomedical applications. The particular system being studied consists of 3–10 nm γ-Fe2O3 nanoparticles in an alginate matrix, which is being studied for applications in targeted drug delivery, as a magnetic-resonance imaging (MRI) contrast agent, and for hyperthermic treatments of malignant tumors. In the present work we report on our efforts to determine if laser-induced breakdown spectroscopy (LIBS) can offer a more accurate and substantially faster determination of iron content in such nanoparticle-containing materials than competing technologies such as inductively-coupled plasma (ICP). Standardized samples of -Fe2O3 nanoparticles (5–25 nm diameter) and silver micropowder (2–3.5 μm diameter) were created with thirteen precisely known concentrations and pressed hydraulically to create solid “pellets” for LIBS analysis. The ratio of the intensity of an Fe(I) emission line at 371.994 nm to that of an Ag(I) line at 328.069 nm was used to create a calibration curve exhibiting an exponential dependence on Fe mass fraction. Using this curve, an “unknown” γ-Fe2O3/alginate/silver pellet was tested, leading to a measurement of the mass fraction of Fe in the nanoparticle/alginate matrix of 51 ± 3 wt.%, which is in very good agreement with expectations and previous determinations of its iron concentration. 相似文献
13.
George Asimellis Nikolaos Michos Ioanna Fasaki Michael Kompitsas 《Spectrochimica Acta Part B: Atomic Spectroscopy》2008
Development and application of an in-situ applicable method to provide rapid determination of platinum group metals (platinum, palladium, and rhodium) elemental concentration in automobile catalyst scrap is reported. Application is based on laser-induced breakdown spectroscopy (LIBS). Actual automobile catalyst slurry in powder form was used to develop the application. With a method requiring approximately 1.5 min of examination per sample, calibration curves are presented with linear regression coefficients close to 0.99 and stability better than 3.0%. 相似文献
14.
Space-, time- and spectrally resolved optical diagnostics of laser ablation plasma has provided the opportunity to realize calibration-free analyses of solid materials. In general, this variant of optical emission spectroscopy of pulsed plasma allows the plasma matrix effects to be overcome, yielding satisfactorily precise and accurate quantitative results on elemental composition of materials without using calibration curves, certified reference materials, and internal standards. Such analysis is very close to be nondestructive due to the minimum possible ablated mass, a feature which is very important in many applications, especially for unique museum exhibits and jeweler samples. In this paper, the use of the method for the analysis of elements in bronze, brass and gold alloys, glass samples, and archaeological findings is demonstrated. The results presented confirm the suitability of the approach for routine applications of our instrumentation, while at the same time simplifying the overall analytical procedure. 相似文献
15.
铀矿是核领域最重要的矿产资源之一,快速、有效勘探铀矿资源能促进核领域平稳、健康发展。激光诱导击穿光谱(LIBS)技术具备多目标元素现场快速检测的优点,能实现铀矿资源准确、快速的现场分析。本工作基于LIBS技术对铀矿中U元素进行了定量分析,对比了偏最小二乘(PLS)和随机森林(RF)两种机器学习算法的定量效果。结果显示,RF模型的定量线性相关系数为0.996,对三个验证集的相对误差分别是22.33%、12.79%和12.04%;PLS模型的定量线性相关系数为0.997,对三个验证集的相对误差分别是4.33%、6.63%和6.85%。对比结果表明,本研究中的PLS模型定量准确度更高,同RF算法相比,PLS算法更适用于铀矿中U的LIBS定量分析。 相似文献
16.
Detection of trace concentrations of helium and argon in gas mixtures by laser-induced breakdown spectroscopy 总被引:1,自引:0,他引:1
E.D. McNaghten A.M. Parkes B.C. Griffiths A.I. Whitehouse S. Palanco 《Spectrochimica Acta Part B: Atomic Spectroscopy》2009,64(10):1111
We report what we believe to be the first demonstration of the detection of trace quantities of helium and argon in binary and ternary gas mixtures with nitrogen by laser-induced breakdown spectroscopy (LIBS). Although significant quenching of helium transitions due to collisional deactivation of excited species was observed, it was found that losses in analytical sensitivity could be minimized by increasing the laser irradiance and decreasing the pressure at which the analyses were performed. In consequence, limits of detection of parts-per-million and tens of parts-per-million and linear dynamic ranges of several orders of magnitude in analyte concentration were obtained. The results of this study suggest that LIBS may have potential applications in the detection of other noble gases at trace concentrations. 相似文献
17.
John S. Penczak Yaoming Liu Robert J. Gordon 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(2):186-188
Several studies have appeared in the past two years reporting that the continuum emission produced by the laser ablation of solid materials is strongly polarized. In a paper that appears to conflict with these findings, Asgill et al. report that they did not observe a significant amount of polarization produced by nanosecond laser excitation of nitrogen gas and laser ablation of copper and steel ( M.E. Asgill, H.Y. Moon, N. Omenetto, D.W. Hahn, Investigation of polarization effects for nanosecond laser-induced breakdown spectroscopy, Spectrochim. Acta Part B (2010) xxx-xxx [7]). Here we show that the apparent discrepancy is resolved when laser fluence and polarization are taken into account. Using a 532 nm Nd:YAG laser to ablate Al samples in air, we find that the degree of polarization, P, of the continuum is greater for s- vs. p-polarized excitation and that P decreases with increasing fluence. We show that P would be < 10% under the conditions of Asgill et al., whereas P > 60% is obtained at low fluences with s-polarized excitation. We also confirm that at high fluence the polarization of the discrete emission is much smaller than that of the continuum. 相似文献
18.
Laser-induced breakdown spectroscopy (LIBS) is applied for depth profile analysis of different thicknesses of copper foils attached on steel and aluminum substrates. In order to account interfacial effects, depth profile analysis of copper coated on steel is also carried out. Experiments are done at ambient air and at two different wavelengths of 266 and 1064 nm of a Nd:YAG laser with pulse durations of 5 ns. A three-dimensional model of multi-pulse laser ablation is introduced on the base of normal evaporation mechanism and the simulation results are compared with the experiments. A normalized concentration (CN) is introduced for determination of interface position and results are compared with the usually used normalized intensity (IN). The effect of coating thickness on average ablation rate and resolution of depth profiling are examined. There is a correlation coefficient higher than 0.95 between the model and experimental depth profiles based on the CN method. Depth profile analysis on the base of CN method shows a better depth resolution in comparison with IN method .Increase in the layer thickness, leads to a decrease in the ablation rate. 相似文献
19.
Hongbo Zheng Fang Yu Yueh Tracy Miller Jagdish P. Singh Kristine E. Zeigler James C. Marra 《Spectrochimica Acta Part B: Atomic Spectroscopy》2008
Laser-induced breakdown spectroscopy was used to determine the elemental composition of a CeO2 composite powder for process control verification during lanthanide borosilicate glass fabrication. Cerium oxide is used as a surrogate for plutonium oxide, which along with other canister contents will be combined with frit to make glass. Laser-induced breakdown spectroscopy data for the composition of the CeO2 batch containing concentrations of Ce, Cr, Si, Fe, Ta, Ni, Zn, Al Mg, Gd, and W were quantitatively determined from laser-induced breakdown spectroscopy spectra of both pellet and powder samples. The results of both forms were compared and it was determined that the pellet data gave slightly better precision than the powder sample. 相似文献
20.
The temporal evolution of the Si atomic emission signal produced from individual silica microspheres in an aerosolized air stream was investigated using laser-induced breakdown spectroscopy (LIBS). Specifically, the temporal evolution of Si emission from 2.47 and 4.09-micrometer-sized particles is evaluated over discrete delay times ranging from 15 to 70 µs following plasma initiation. The analyte signal profile from the microspheres, taken as the silicon atomic emission peak-to-continuum ratio, was observed to follow the same profile of silicon-rich nanoparticles over the range of delay times. The ratio of analyte signals for the 2.47 and 4.09-micrometer particles was observed to be approximately constant with plasma decay time and less than the expected mass ratio, leading to the conclusion that further vaporization and enhanced analyte response do not continue with increasing delay times for these microsphere sizes. While recent research suggests that the temporal component of analyte response is important for quantitative LIBS analysis, the current study does confirm earlier research demonstrating an upper size limit for quantitative aerosol particle analysis in the diameter range of 2 to 2.5 µm for silica microspheres. 相似文献