首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Small particles of gold foil detached from an indoor decoration might be important evidence to associate a suspect with a crime scene. We have investigated the application of elemental analysis using synchrotron radiation X-ray fluorescence spectrometry to discriminate small particles of gold foil. Eight kinds of gold foil samples collected in Japan were used in the experiments. As a result of synchrotron radiation X-ray fluorescence spectrometry, only two elements, gold and silver, were detected from all gold foil samples. The intensity ratios of AgKalpha/AuLalpha showed good correlation with the content ratios of Ag/Au. The variation of intensity ratio within a same sample was sufficiently small compared with those of different samples. Therefore the comparison of this intensity ratio can be an effective method to discriminate small particles originating from different types of gold foil.  相似文献   

2.
Two multielement instrumental methods of analysis, micro X-ray fluorescence spectrometry (micro-XRF) and inductively coupled plasma atomic emission spectrometry (ICP-AES) were applied for the analysis of 7th and 5th century B.C. ancient ceramic sherds in order to evaluate the above two methods and to assess the potential to use the current compact and portable micro-XRF instrument for the in situ analysis of ancient ceramics. The distinguishing factor of interest is that micro-XRF spectrometry offers the possibility of a nondestructive analysis, an aspect of primary importance in the compositional analysis of cultural objects. Micro-XRF measurements were performed firstly directly on the ceramic sherds with no special pretreatment apart from surface cleaning (micro-XRF on sherds) and secondly on pressed pellet disks which were prepared for each ceramic sherd (micro-XRF on pellet). For the ICP-AES determination of elements, test solutions were prepared by the application of a microwave-assisted decomposition procedure in closed high-pressure PFA vessels. Also, the standard reference material SARM 69 was used for the efficiency calibration of the micro-XRF instrument and was analysed by both methods. In order to verify the calibration, the standard reference materials NCS DC 73332 and SRM620 as well as the reference materials AWI-1 and PRI-1 were analysed by micro-XRF. Elemental concentrations determined by the three analytical procedures (ICP-AES, micro-XRF on sherds and micro-XRF on pellets) were statistically treated by correlation analysis and Student's t-test (at the 95% confidence level).  相似文献   

3.
The concentration of cobalt in 2 solid matrices was determined by neutron activation analysis (NAA) using standard solutions which were prepared by dissolving pure cobalt in nitric acid. The matrices assayed were a cobalt-aluminium wire and an iron foil and the respective Co concentrations found were 0.488% and 0.138%. Both solid materials can equally be used as standard references of cobalt in NAA. Subcadmium and epicadmium neutron fluxes in the reactor core were determined using Co?Al and Au?Al alloy wires. Very good agreement was obtained for all irradiation configurations of the target monitors cobalt and gold.  相似文献   

4.
The capabilities of the X-ray beamlines at Berliner Elektronenspeicherring für Synchrotronstrahlung II (BESSY II) for hard X-ray measurements with micro- and nanometer spatial resolution are reviewed. The micro-X-ray fluorescence analysis (micro-XRF), micro-extended X-ray absorption fine structure (micro-EXAFS), micro-X-ray absorption near-edge structure (micro-XANES) as well as X-ray standing wave technique (XSW), X-ray beam induced current (XBIC) in combination with micro-XRF and micro-diffraction as powerful methods for organic and inorganic sample characterization with synchrotron radiation are discussed. Mono and polycapillary optical systems were used for fine X-ray focusing down to 1 µm spot size with monochromatic and white synchrotron radiation. Polycapillary based confocal detection was applied for depth-resolved micro-XRF analysis with a volume resolution down to 3.4 · 10− 6 mm3. Standing wave excitation in waveguides was also applied to nano-EXAFS measurements with depth resolution on the order of 1 nm. Several examples of the methods and its applications in material research, biological investigations and metal-semiconductor interfaces analysis are given.  相似文献   

5.
The patterned Co layers deposited on the scratched Cu surfaces were investigated with the use of the scanning electron microscopy. Patterned cobalt thin films were electrochemically deposited from the cobalt sulfate bath at room temperature. Pattering of cobalt was carried out by simple means of substrate scratching. Gentle scratching induces a direct pattering of cobalt from vertical to horizontal. The prepared pattered films were characterized for their structural, surface morphological and compositional properties by means of X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. X-ray diffraction studies reveal that the films are of cobalt. From the SEM images fabrication of patterns of cobalt is apparent. This work demonstrates a novel approach for obtaining patterned cobalt for many technological applications.  相似文献   

6.
X-ray fluorescence analysis (XRF) is a suitable technique for elemental analysis in nondestructive measurement. Recently, small area analysis by using the XRF technique has gained popularity. The synchrotron radiation source is responsible for the increase in the popularity of micro-XRF analysis. However, most people find it difficult to gain access to the synchrotron radiation facility. In this study, a micro-XRF system is developed for use in laboratories. To enable the use of this system, it is necessary to satisfy the following two conditions: (1) the excitation source must be optional for efficient excitation of the sample and (2) the X-rays must be focused. An X-ray tube with multi excitation sources has also been developed. In this tube, there are three targets, namely Cr, W, and Pd, on the anode, and each target can be excited sequentially. A doubly curved crystal (DCC) developed using a Si(111) crystal is used as the optics for focusing the X-rays into a beam with a diameter of less than 100 μm. A system composed of the X-ray tube and DCC optics is used to perform the small particle analysis of a Si wafer. The lower limit of detection (LLD) of the sample particle is estimated as 1.6 μm in diameter.  相似文献   

7.
Magnetic cobalt nanowire thin films   总被引:1,自引:0,他引:1  
Two-dimensional (2D) and three-dimensional (3D) magnetic cobalt nanowire thin films with tunable 3-10 nm wire diameters have been electrodeposited using mesoporous silica templates containing 2D hexagonal or 3D cubic pore channels. As compared to bulk cobalt films, the cobalt nanowire thin films exhibit enhanced coercivities and controllable magnetic anisotropy through tuning of the mesostructure and dimension of the nanowires. Such novel magnetic nanowire thin films may provide a new platform for high-density information storage applications.  相似文献   

8.
Non-destructive analysis of cultural objects by micro-XRF spectrometry is an advantageous multi-element technique that has rapidly developed during the past few years. Portable instruments contribute significantly to the in situ analysis of valuable cultural objects, which cannot be transported to the laboratory. Ancient ceramics are the most common archaeological findings and they carry a significant historical content. Their analysis often presents certain particularities due to surface irregularities and heterogeneity problems. In the present work, the analytical characteristics (beam spot size, geometry effect and detection limits) of a compact and portable micro-XRF instrument with a monocapillary lens are presented in details. The standard reference materials SARM 69, SRM 620, NCS DC 73332 and the reference materials AWI-1 and PRI-1 were analysed for the determination of the detection limits (DL's) and the evaluation of the accuracy of the micro-XRF. Emphasis is given on the critical parameters, which should be monitored during measurements and influence the final results in the analysis of ancient ceramics. A quantitative analysis of ancient ceramic samples from Abdera (North Greece) is also presented.  相似文献   

9.
This paper discusses the features of an application of two versions of X-ray fluorescence analysis (XRF), commonly used at present, namely XRF using synchrotron radiation to excite the fluorescence in the sample investigated (SRXRF), and XRF using capillary X-ray optics. The operational characteristics of different models of micro-XRF spectrometers are considered. The general differences between conventional XRF and SRXRF and their influence on the choice of the analytical procedure are also presented. Examples of the typical errors resulting from the use of some classical analytical procedures in several applications are illustrated.  相似文献   

10.
Carbohydrate films on gold based on dimannoside thiols (DMT) were prepared, and a complementary surface chemical analysis was performed in detail by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS), near-edge X-ray absorption fine structure (NEXAFS), FT-IR, and contact angle measurements in order to verify formation of ω-carbohydrate-functionalized alkylthiol films. XPS (C 1s, O 1s, and S 2p) reveals information on carbohydrate specific alkoxy (C-O) and acetal moieties (O-C-O) as well as thiolate species attached to gold. Angle-resolved synchrotron XPS was used for chemical speciation at ultimate surface sensitivity. Angle-resolved XPS analysis suggests the presence of an excess top layer composed of unbound sulfur components combined with alkyl moieties. Further support for DMT attachment on Au is given by ToF-SIMS and FT-IR analysis. Carbon and oxygen K-edge NEXAFS spectra were interpreted by applying the building block model supported by comparison to data of 1-undecanethiol, poly(vinyl alcohol), and polyoxymethylene. No linear dichroism effect was observed in the angle-resolved C K-edge NEXAFS.  相似文献   

11.
In this paper, for the first time, we introduced the seed-mediated method to the growth of cobalt hexacyanoferrate nanoparticles (CoNPs), using 3.5 nm gold nanoparticles as seeds and multiwalled carbon nanotubes (MWCNTs) as growth scaffold which would both show synergistic action toward the reduction of H2O2. Via gold seeds, the one-step fabrication of CoNPs on the glassy carbon electrode is simple without any linking reagents, which will ingeniously exert the electrochemical properties of cobalt hexacyanoferrate. Combined with glucose oxidase, the sensing surface is applied as a biosensor for glucose. The growth of CoNPs is a chemical deposition process around the small Au nanoseed particles. The nanoseeds bridge the CoNPs and CNTs to form a smart nanocomposite. Spherical CoNPs have a relatively moderate dispersion on the three-dimensional network of CNTs with relatively even diameter ca. 100 nm. Whereas, in the control experiments without gold seeds cobalt hexacyanoferrate can only form continuous films, of which the size is far from nanolevel and the catalytic ability is poor. The synthesis and fabrication/modification of CoNPs are simple and fast without prior preparation of CoNPs and lengthy process of cross-linking. The amount of the seeds and CNTs, growth time and concentration of growth solution were investigated. Scanning electron microscopy (SEM) and electrochemical method were used.  相似文献   

12.
Thin nanoporous gold (np-Au) films, ranging in thickness from approximately 40 to 1600 nm, have been prepared by selective chemical etching of Ag from Ag/Au alloy films supported on planar substrates. A combination of scanning electron microscopy (SEM) imaging, synchrotron grazing incidence small angle X-ray scattering, and N2 adsorption surface area measurements shows the films to exhibit a porous structure with intertwined gold fibrils exhibiting a spectrum of feature sizes and spacings ranging from several to hundreds of nanometers. Spectroscopic ellipsometry measurements (300-800 nm) reveal the onset of surface plasmon types of features with increase of film thicknesses into the approximately 200 nm film thickness range. Raman scattering measurements for films functionalized with a self-assembled monolayer formed from 4-fluorobenzenethiol show significant enhancements which vary sharply with film thickness and etching times. The maximum enhancement factors reach approximately 10(4) for 632.8 nm excitation, peak sharply in the approximately 200 nm thickness range for films prepared at optimum etching times, and show high spot to spot reproducibility with approximately 1 microm laser spot sizes, an indication that these films could be useful as durable, highly reproducible surface-enhanced Raman substrates.  相似文献   

13.
Flameless atomic absorption spectroscopy has been successfully applied to the analysis of trace levels of gold, silver and cobalt in milligram quantities of aluminum. The two-line method of background correction was used with good, but not total, success. The reproducibility of the measurements was excellent, and the results compared very well with the expected values. Prepared for the U.S. Atomic Energy Commission under U.S. Government Contract W-7405 eng 26.  相似文献   

14.
Molecular thin films of manganese (SAM-2), iron (SAM-3), and cobalt (SAM-4) phthalocyanine complexes, non-peripherally tetra-substituted with benzylmercapto, were formed on polycrystalline gold disc electrode by self-assembly technique. Surface characteristics of the films were interrogated by cyclic voltammetry. Significant passivation of voltammetry processes associated with bare gold surface (gold oxidation and underpotential deposition of copper) confirmed formation of the films. Electrocatalytic property of the films was evidenced from better voltammetry responses (less positive oxidation potential and better current signal) of the insecticide, carbofuran, on these films, relative to that on bare gold electrode. In terms of less positive oxidation potential, the FePc derivative (3) gave the best response, while the best current signal was observed on SAM-2-modified gold electrode. The average heterogeneous rate constant, k, for the oxidation of carbofuran was 3.6 × 10−2 cm s−1 on the SAM film with the best current signal (SAM-2).  相似文献   

15.
Nanocrystalline black cobalt electrically deposited onto a steel substrate from aqueous solution was investigated. The influence of electrolyte composition and operating parameters on the appearance and optical properties of the coat was studied. The deposition conditions that ensure the highest solar absorptance were optimized. The chemical composition of fabricated thin films before and after annealing at 400 °C was determined by energy dispersive X‐ray analysis (EDS) and XPS technique. The crystal structure analysis showed that the bulk composition of the films was mainly cobalt oxide. The surface analysis reveals that the topmost surface layers of the films are made of different cobalt compounds confirming the multivalence state of Co on the surface with an oxidation state of ≥ + 2. Scanning electron microscope (SEM) observation indicated that the surface morphology was changed from dendritic structure to lamellar at higher current density. The black cobalt film showed soft magnetic characteristicsand excellent optical properties to transform solar energy into thermal energy. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Journal of Solid State Electrochemistry - Self-assembled monolayer (SAM) of cobalt teraaminophthalocyanine (CoTAPc) was developed on thioctic acid (TA) dithiol modified gold electrode and...  相似文献   

17.
Trace amounts of gold and silver in high-purity iron or steel were preconcentrated by reductive coprecipitation with palladium using ascorbic acid, and determined by electrothermal atomic absorption spectrometry (ET-AAS). Both gold and silver could be simultaneously separated and sensitively determined in 10 metals (aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, vanadium and zinc). Comparable values were obtained for gold and silver in reference materials (low alloy steel) by the proposed method and a non-separation method; good agreement was found between the analytical values by both methods and the certified values. The proposed method is easy, simple and not dependent on sample composition and content. Moreover, gold and silver in metal samples could be simultaneously separated together with selenium and tellurium. The detection limits for gold and silver (3 σ) are 0.003 μg g–1 and 0.002 μg g–1, respectively. Received: 3 February 2000 / Revised: 11 April 2000 / Accepted: 16 April 2000  相似文献   

18.
Trace amounts of gold and silver in high-purity iron or steel were preconcentrated by reductive coprecipitation with palladium using ascorbic acid, and determined by electrothermal atomic absorption spectrometry (ET-AAS). Both gold and silver could be simultaneously separated and sensitively determined in 10 metals (aluminum, cobalt, chromium, copper, iron, manganese, molybdenum, nickel, vanadium and zinc). Comparable values were obtained for gold and silver in reference materials (low alloy steel) by the proposed method and a non-separation method; good agreement was found between the analytical values by both methods and the certified values. The proposed method is easy, simple and not dependent on sample composition and content. Moreover, gold and silver in metal samples could be simultaneously separated together with selenium and tellurium. The detection limits for gold and silver (3 σ) are 0.003 μg g–1 and 0.002 μg g–1, respectively. Received: 3 February 2000 / Revised: 11 April 2000 / Accepted: 16 April 2000  相似文献   

19.
The gas sensing behaviors of cobalt phthalocyanine (CoPc) and metal-free phthalocyanine (H2Pc) thin films were investigated with respect to analyte basicity. Chemiresistive sensors were fabricated by deposition of 50 nm thick films on interdigitated gold electrodes via organic molecular beam epitaxy (OMBE). Time-dependent current responses of the films were measured at constant voltage during exposure to analyte vapor doses. The analytes spanned a range of electron donor and hydrogen-bonding strengths. It was found that, when the analyte exceeded a critical base strength, the device responses for CoPc correlated with Lewis basicity, and device responses for H2Pc correlated with hydrogen-bond basicity. This suggests that the analyte-phthalocyanine interaction is dominated by binding to the central cavity of the phthalocyanine with analyte coordination strength governing CoPc sensor responses and analyte hydrogen-bonding ability governing H2Pc sensor responses. The interactions between the phthalocyanine films and analytes were found to follow first-order kinetics. The influence of O2 on the film response was found to significantly affect sensor response and recovery. The increase of resistance generally observed for analyte binding can be attributed to hole destruction in the semiconductor film by oxygen displacement, as well as hole trapping by electron donor ligands.  相似文献   

20.
A simple preparation of ultrathin nanoporous gold film was described. Copper and gold were used to fabricate Cu-Au alloy film sthrough vacuum deposition. The formation of nanoporous gold films from the alloy films involved thermal process and chemical etch by hydrochloric acid or by nitric acid. The free-standing nanoporous gold films have been analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectrometer (XPS) and surface-enhanced Raman scattering (SERS). It was noted that the nanoporous gold film etched by hydrochloric acid is uniform with a cover of fog-like moieties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号