首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1,000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements.  相似文献   

2.
Dual-pulse (DP) laser-induced breakdown spectroscopy (LIBS) provides significant improvement in signal intensity as compared to conventional single-pulse LIBS. We investigated collinear DPLIBS experimental performance using various laser wavelength combinations employing 1064 nm, 532 nm, and 266 nm Nd:YAG lasers. In particular, the role of the pre-pulse laser wavelength, inter-pulse delay times, and energies of the reheating pulses on LIBS sensitivity improvements is studied. Wavelengths of 1064 nm, 532 nm, and 266 nm pulses were used for generating pre-pulse plasma while 1064 nm pulse was used for reheating the pre-formed plasma generated by the pre-pulse. Significant emission intensity enhancement is noticed for all reheated plasma regardless of the pre-pulse excitation beam wavelength compared to single pulse LIBS. A dual peak in signal enhancement was observed for different inter-pulse delays, especially for 1064:1064 nm combinations, which is explained based on temperature measurement and shockwave expansion phenomenon. Our results also show that 266 nm:1064 nm combination provided maximum absolute signal intensity as compared to 1064 nm:1064 nm or 532 nm:1064 nm.  相似文献   

3.
Pre-ablation dual-pulse LIBS enhancement data for copper, brass and steel using ns laser excitation are reported. Although large enhancements are observed for all samples, the magnitude of the enhancement is matrix dependent. Whereas all of the dual-pulse studies used ns laser excitation we see interesting effects when using ps and fs laser excitation for single-pulse LIBS. LIBS spectra of copper using 1.3 ps and 140 fs laser pulses show much lower background signals compared to ns pulse excitation. Also, the atomic emission decays much more rapidly with time. Because of relatively low backgrounds when using ps and fs pulses, non-gated detection of LIBS is shown to be very effective. The plasma dissipates quickly enough using ps and fs laser pulses, that high pulse rates, up to 1000 Hz, are effective for increasing the LIBS signal, for a given measurement time. Finally, a simple near-collinear dual-pulse fiber-optic LIBS probe is shown to be useful for enhanced LIBS measurements. Received: 1 August 2000 / Revised: 2 November 2000 / Accepted: 8 November 2000  相似文献   

4.
The enhancement of emission intensity resulting from the interaction between two laser-induced plasmas on two orthogonal targets was investigated using double pulse laser-induced breakdown spectroscopy (LIBS) at 0.7 Pa, by means of time-resolved spectroscopy and fast photography. The results showed that the interaction between both plasmas improved carbon emission intensity in comparison to a single laser-induced plasma. For all the carbon lines of interest 477.2 nm (CI), 426.7 nm (CII), and 473.4 nm (C2 Swan band head), the intensity enhancement showed a maximum at a delay between lasers in the range from 2 to 5 μs; moreover it increased with the fluence of the first laser. On the other hand, in the case of C2 the intensity enhancement reached a maximum at 5 mm from the target; however it decreased with increasing fluence of the second laser. The largest intensity enhancement found was twofold for atomic species and sixfold for molecular species.  相似文献   

5.
Double-Pulse Laser-Induced Breakdown Spectroscopy of iron using both Nd:YAG and TEA–CO2 lasers has been investigated to better understand mechanisms of signal enhancement. The signal dependence on the delay between the two laser pulses shows an enhanced signal when the CO2 laser pulse interacts with the sample before the Nd:YAG pulse. Signal kinetics and a simple model of sample heating by the CO2 pulse show that the enhancement during the first 700 ns is due primarily to sample heating. Images of the sample surface after ablation as well as time-integrated pictures of the plasma suggest that particles are ejected from the surface during the first microseconds after the arrival of the CO2 pulse and provide fuel for the subsequent plasma created by the Nd:YAG laser.  相似文献   

6.
This paper presents R&D activities to explore new laser parameter ranges in pulse energy, time and space for laser-induced breakdown spectroscopy. The collinear double pulse effect, which is well studied for pulses of typically several 100 mJ energy can also be observed for laser pulses having a pulse energy two orders of magnitude lower. In this case, maximum line emission intensity occurs at interpulse separations of a few 100 ns. Temporal pulse tailoring to improve the performance of LIBS is only a first step. A comprehensive approach includes spatial pulse shaping to generate craters with predefined shape or to improve spatial averaging for the analysis of inhomogeneous samples. High performance components for LIBS systems such as spectrometers, electronics and sample stands are required to enable industrial applications. Latest developments offer wide-band single spectra acquisition with a high spectral resolution at a measuring frequency of up to 500 Hz. The next generation of multi-channel integrator electronics for Paschen–Runge spectrometers equipped with PMT detectors will further push the measuring speed to up to 5 kHz, thus opening a new area of high-speed LIBS microanalysis. Novel LIBS devices for various industrial applications presented include analysis of metallic process control samples with scale layers, on-site analysis of slag samples in secondary metallurgy, high-speed identification of Al scrap, mix-up detection of pipe fittings as well as recent work towards in-process identification of hot coils in a rolling mill.  相似文献   

7.
Laser induced breakdown spectroscopy (LIBS) is an emerging technique for fast and accurate compositional analysis of many different materials. We present a systematic study of collinear double-pulse LIBS on different technical polymers such as polyamide, polyvinyl chloride, polyethylene etc. Polymer samples were ablated in air by single-pulse and double-pulse Nd:YAG laser radiation (8 ns pulse duration) and spectra were recorded with an Echelle spectrometer equipped with an ICCD camera. We investigated the evolution of atomic and ionic line emission intensities for different delay times between the laser pulses (from 20 ns to 500 μs) at a laser wavelength of 532 nm. We observed double-pulse LIBS signals that were enhanced as compared to single-pulse measurements depending on the delay time and the type of polymer material investigated. LIBS signals of polymer materials that are enhanced by double-pulse excitation may be useful for monitoring the concentration of heavy metals in polymer materials.  相似文献   

8.
Influence of time delay between two laser pulses on the LIBS (laser induced breakdown spectroscopy) signal inside liquids was investigated and the results are compared with data from literature. Plasma was produced by laser ablation (LA) of aluminum inside water and its emission after the second laser pulse was characterized by spectrally and time resolved detection. Light propagation through the vapor bubble formed by the first laser pulse was studied by measurements of beam scattering and transmission. Optical absorption by the evolving bubble is not significant, but its growth is accompanied by lowering of its refraction index nb with respect to surrounding liquid; this effect increases defocusing both of the incident beam and of the out-coming plasma radiation. Collection efficiency of the secondary plasma emission rapidly degrades with the cavity growth, but close to its full expansion the LIBS signal partially recovers through Snell's reflections at the liquid–vapor interface, which produce a bright spot close to the bubble center. Such a light redistribution allows detecting of the emission from external plasma volume, otherwise deflected out of the collection system. Except for strong line transitions from the main sample constituents, self-absorbed inside the high-pressure cavity, we observed the highest LIBS signal when sending the second pulse well before the bubble is fully expanded. Transitions of the pressure wave through the focal volume, formed by the first laser pulse and reflected from the cell's walls and sample back-plane, enhances the LIBS signal importantly. The measured lifetime of the secondary plasma rapidly decreases with the bubble expansion. Here, we also discuss the optimization of the optical collection system and some analytical aspects of double-pulse (DP) LIBS inside liquids.  相似文献   

9.
A statistical analysis of single-shot spectral data is reported for laser-induced breakdown spectroscopy (LIBS). Fluctuations in both atomic emission and plasma continuum emission are investigated in concert for a homogenous gaseous flow, and fluctuations in plasma temperature are reported based on iron atomic emission in an aerosol-seeded flow. Threshold irradiance for plasma initiation and plasma absorption were investigated for pure gaseous and aerosol streams, with detailed statistical measurements performed as a function of pulse energy in the breakdown regime. The ratio of the analyte atomic emission intensity to the continuum emission intensity (peak/base) provided a robust signal for single-shot LIBS analysis. Moreover, at optimal temporal delay, the precision of the LIBS signal was maximized for pulse energies within the saturation regime with respect to plasma absorption of incident energy. Finally, single-shot temperature measurements were analyzed, leading to the conclusion that spatial variations in the plasma volume formation and subsequent plasma emission collection, play important roles in the overall shot-to-shot precision of the LIBS technique for gaseous and aerosol analysis.  相似文献   

10.
This work focuses on the study of the plumes obtained in the double pulse orthogonal Laser Induced Breakdown Spectroscopy (LIBS) in the pre-ablation configuration using both spectroscopic and shadowgraphic approaches. Single and double pulse LIBS experiments were carried out on a brass sample in air. Both the distance of the air plasma from the target surface and the interpulse delay were varied (respectively in the range 0.1–4.2 mm and up to 50 μs) revealing a significant variation of the plasma emission and of the plume-shock wave dynamical expansion in different cases. The intensity of both atomic and ionized zinc lines was measured in all the cases, allowing the calculation of the spatially averaged temperature and electron density and an estimation of the ablated mass. The line intensities and the thermodynamic parameters obtained by the spectroscopic measurements were discussed bearing in mind the dynamical expansion characteristics obtained from the shadowgraphic approach. All the data seem to be consistent with the model previously proposed for the double pulse collinear configuration where the line enhancement is mainly attributed to the ambient gas rarefaction produced by the first laser pulse, which causes a less effective shielding of the second laser pulse.  相似文献   

11.
Single and double pulse laser-induced breakdown spectroscopy (LIBS) was carried out on aluminum samples in air. In the case of double pulse excitation, experiments were conducted by using the same laser source operated at the same wavelength (1064 nm in most cases here presented). A lowering of the second pulse plasma threshold was observed, together with an overall enhancement in line emission for the investigated time delay between the two pulses (40–60 μs). The laser-induced plasma originated by a single and double pulse was investigated near ignition threshold with the aim to study possible dynamical mechanisms in different regimes. Currently available spectroscopic diagnostics of plasma, such as the line broadening and shift due Stark effects, have been used in the characterization in order to retrieve electron densities, while standard temperature measurements were based on Boltzmann plot. Plasma relevant parameters, such as temperature and electron density, have been measured in the plasma decay on a long time scale, and compared with crater shape (diameter and inferred volume). The comparison of double with single pulse laser excitation was carried out while keeping constant the energy per pulse; the influence of laser energy was investigated as well. Results here obtained suggest that use of the double pulse technique could significantly improve the analytical capabilities of LIBS technique in routine laboratory experiments.  相似文献   

12.
Double-pulse femtosecond laser ablation has been shown to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to single-pulse ablation particularly when an appropriate interpulse delay is selected, that is typically in the range of 50–1000 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy analysis of materials. A detailed comparative study of collinear double- over single-pulse femtosecond laser-induced breakdown spectroscopy has been carried out, based on measurements of emission lifetime, temperature and electronic density of plasmas, produced during laser ablation of brass with 450 fs laser pulses at 248 nm. The results obtained show a distinct increase of plasma temperature and electronic density as well as a longer decay time in the double-pulse case. The plasma temperature increase is in agreement with the observed dependence of the emission intensity enhancement on the upper energy level of the corresponding spectral line. Namely, intensity enhancement of emission lines originating from higher lying levels is more profound compared to that of lines arising from lower energy levels. Finally, a substantial decrease of the plasma threshold fluence was observed in the double-pulse arrangement; this enables sensitive analysis with minimal damage on the sample surface.  相似文献   

13.
A numerical model, describing laser–solid interaction (i.e., metal target heating, melting and vaporization), vapor plume expansion, plasma formation and laser–plasma interaction, is applied to describe the effects of double pulse (DP) laser ablation and laser induced breakdown spectroscopy (LIBS). Because the model is limited to plume expansion times in the order of (a few) 100 ns in order to produce realistic results, the interpulse delay times are varied between 10 and 100 ns, and the results are compared to the behavior of a single pulse (SP) with the same total energy. It is found that the surface temperature at the maximum is a bit lower in the DP configuration, because of the lower irradiance of one laser pulse, but it remains high during a longer time, because it rises again upon the second laser pulse. Consequently, the target remains for a longer time in the molten state, which suggests that laser ablation in the DP configuration might be more efficient, through the mechanism of splashing of the molten target. The total laser absorption in the plasma is also calculated to be clearly lower in the DP configuration, so that more laser energy can reach the target and give rise to laser ablation. Finally, it is observed that the plume expansion dynamics is characterized by two separate waves, the first one originating from the first laser pulse, and the second (higher) one as a result of the second laser pulse. Initially, the plasma temperature and electron density are somewhat lower than in the SP case, due to the lower energy of one laser pulse. However, they rise again upon the second laser pulse, and after 200 ns, they are therefore somewhat higher than in the SP case. This is especially true for the longer interpulse delay times, and it is expected that these trends will be continued for longer delay times in the μs-range, which are most typically used in DP LIBS, resulting in more intense emission intensities.  相似文献   

14.
The influence of laser pulse duration on laser-induced breakdown spectroscopy (LIBS) calibration curves is investigated in the present work. Two Nd:YAG lasers providing pulses of 35 ps and 5 ns, respectively, both operating at 1064 nm, have been used to create plasmas on aluminium, manganese, iron, and silicon targets and on prepared stoichiometric samples of these metals in a matrix. The time-resolved, space-averaged plasma temperatures have been deduced using Boltzmann plots, while the electron number density has been determined from the broadening of spectral lines. The effect of laser pulse duration on the plasma characteristics is discussed, and comparisons are made with previously reported data measured under similar experimental conditions. The optimum experimental conditions (i.e., time delay, gate width, laser energy) have been determined for reliable use of LIBS for quantitative analysis for both pulse durations. For each of the metals of interest, calibration curves have been constructed for concentrations ranging up to 2%.  相似文献   

15.
A novel laser-induced breakdown spectroscopy (LIBS)-based measurement method for metals in water is demonstrated. In the presented technology a small amount of sodium chloride is dissolved in the sample solution before spraying the sample into a tubular oven. After water removal monodisperse dry NaCl aerosol particles are formed where trace metals are present as additives. A single-particle LIBS analysis is then triggered with a scattering based particle detection system. Benefits are the highly increased metal concentration in the LIBS focal volume and the static NaCl-matrix which can be exploited in the signal processing procedure. Emitted light from the emerged plasma plume is collected with wide angle optics and dispersed with a grating spectrometer. In an aqueous solution, the respective limits of detection for zinc and lead were 0.3 ppm and 0.1 ppm using a relatively low 14 mJ laser pulse energy. Zn/Na peak intensity ratio calibration curve for zinc concentration was also determined and LIBS signal dependence on laser pulse energy was investigated.  相似文献   

16.
The development of a new detection system for laser induced breakdown spectroscopy (LIBS), based on a collinear quartz acousto-optical tunable filter (AOTF) for the ultraviolet spectral region coupled to a photomultiplier, is described. It was used in conjunction with a 1064 nm, 5 ns pulse duration neodymium-doped yttrium aluminium garnet (Nd:YAG) laser source and also employed a radio-frequency signal generator to control the AOTF and a digital delay generator to delay the start of the detection in relation to the instant of the application of the laser pulse. The detection system was optimized for highest detectivity for the manganese peak at 293.9 nm while analyzing a steel sample by LIBS. The resulting signal to background ratio at the optimal conditions of 2 µs delay time, 40 µs integration time gate and 110 mJ pulse energy was similar to that of a commercial echelle-intensified charge-coupled device (echelle-ICCD) detection system. The new detection system was then employed for manganese determination in steel samples, taking the emission signals at just 15 wavelengths, 5 related to the above mentioned manganese peak, another 5 to background emission around 296.0 nm and the others to the iron peak at 297.3 nm (internal standard). The resulting analytical curve for manganese, obtained using 5 samples in the concentration range of 0.214 to 0.939% w/w, presented a correlation coefficient of 0.979 for an exponential regression function. The relative errors of predicting the manganese concentrations, using the calibration curve, for 2 samples, containing 0.277 and 0.608% w/w, were 20.7 and − 1.9%, respectively.  相似文献   

17.
The influence of He atmosphere and gate width in laser-induced breakdown spectroscopy (LIBS) determination of fluorine concentration was investigated in detail. The measurements were realized on two double pulse LIBS devices featuring different parameters. Calibration curves, describing the relationship between the fluorine concentration and the corresponding intensity of the LIBS signal, were constructed for both LIBS devices, with and without He flow, respectively. Detection limits achieved were in the range 1.18-0.47 wt.%. The best LOD value was obtained in He atmosphere. The LIBS measurement of fluorine content is influenced by different gate widths and the atmosphere in the working chamber. The proposed method was successfully applied to the determination of fluorine concentration in glass ionomer cements.  相似文献   

18.
The emission spectra of laser-ablated Cu atoms in water were examined, focusing on the irradiation-pulse duration effects. Spectral line profile was observed for the pulse duration of 19, 90, and 150 ns at various delay times. The line width as narrow as instrumental width was obtained by 150-ns pulse at the delay time of 800 ns. Also, long pulses result in high intensity of the emission. The spectral feature obtained by long pulses looks similar to that obtained in a gas phase. The absorption of the later part of the long pulse directly by the plume having been formed by the earlier part of the pulse may be the cause of this gas-phase-like emission. Whether the pulse heats directly the surface or the plume was investigated by the measurements of the removal volume of the ablation pit obtained by laser confocal scanning microscopy and the maximum bubble expansion size observed by shadowgraphy.  相似文献   

19.
Ground- and excited-state structures of the bimetallic, ligand-bridged compound Ir2(dimen)4(2+) are investigated in acetonitrile by means of time-resolved X-ray scattering. Following excitation by 2 ps laser pulses at 390 nm, analysis of difference scattering patterns obtained at eight different time delays from 250 ps to 300 ns yields a triplet excited-state distance between the two Ir atoms of 2.90(2) ? and a triplet excited-state lifetime of 410(70) ns. A model incorporating the presence of two ground-state structures differing in Ir–Ir separation is demonstrated to fit the obtained data very well, in agreement with previous spectroscopic investigations. Two ground-state isomers with Ir–Ir separations of 3.60(9) and 4.3(1) ? are found to contribute equally to the difference scattering signal at short time delays. Further studies demonstrate the feasibility of increasing the effective time resolution from the 100 ps probe width down to the 10 ps regime by positioning the laser pump pulse at selected points in the X-ray probe pulse. This approach is used to investigate the structures of both the singlet and the triplet excited states of Ir2(dimen)4(2+).  相似文献   

20.
Laser-induced breakdown spectroscopy (LIBS) measurements were performed on bulk water solutions by applying a double-pulse excitation from a Q-Switched (QS) Nd:YAG laser emitting at 1064 nm. In order to optimize the LIBS signal, laser pulse energies were varied through changing of the QS trigger delays with respect to the flash-lamp trigger. We had noted that reduction of the first pulse energy from 92 mJ to 72 mJ drastically improves the signal, although the second pulse energy was also lowered from 214 mJ to 144 mJ. With lower pulse energies, limit of detection (LOD) for Mg in pure water was reduced for one order of magnitude (34 ppb instead of 210 ppb). In order to explain such a phenomenon, we studied the dynamics of the gas bubble generated after the first laser pulse through measurements of the HeNe laser light scattered on the bubble. The influence of laser energy on underwater bubble and plasma formation and corresponding plasma emission intensity were also studied by photographic technique. From the results obtained, we conclude that the optimal first pulse energy should be kept close to the plasma elongation threshold, in our case about 65 mJ, where the gas bubble has its maximum lateral expansion and the secondary plasma is still well-localized. The importance of a multi-pulse sequence on the LIBS signal was also analyzed, where the pulse sequence after the first QS aperture was produced by operating the laser close to the lasing threshold, with the consequent generation of relaxation oscillations. Low-energy multi-pulses might keep the bubble expansion large prior to the probing pulse, but preventing the formation of secondary weak plasmas in multiple sites, which reduces the LIBS signal. The short interval between the pre-pulses and the probing pulse is another reason for the observed LIBS signal enhancement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号