首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Recent attempts to recover the graviton propagator from spin foam models involve the use of a boundary quantum state peaked on a classical geometry. The question arises whether beyond the case of a single simplex this suffices for peaking the interior geometry in a semiclassical configuration. In this paper we explore this issue in the context of quantum Regge calculus with a general triangulation. Via a stationary phase approximation, we show that the boundary state succeeds in peaking the interior in the appropriate configuration, and that boundary correlations can be computed order by order in an asymptotic expansion. Further, we show that if we replace at each simplex the exponential of the Regge action by its cosine—as expected from the semiclassical limit of spin foam models—then the contribution from the sign-reversed terms is suppressed in the semiclassical regime and the results match those of conventional Regge calculus.  相似文献   

2.
Since there are quantization ambiguities in constructing the Hamiltonian constraint operator in isotropic loop quantum cosmology, it is crucial to check whether the key features of loop quantum cosmology are robust against the ambiguities. In this Letter, we quantize the Lorentz term of the gravitational Hamiltonian constraint in the spatially flat FRW model by two approaches different from that of the Euclidean term. One of the approaches is very similar to the treatment of the Lorentz part of Hamiltonian in loop quantum gravity and hence inherits more features from the full theory. Two symmetric Hamiltonian constraint operators are constructed respectively in the improved scheme. Both of them are shown to have the correct classical limit by the semiclassical analysis. In the loop quantum cosmological model with a massless scalar field, the effective Hamiltonians and Friedmann equations are derived. It turns out that the classical big bang is again replaced by a quantum bounce in both cases. Moreover, there are still great possibilities for the expanding universe to recollapse due to the quantum gravity effect.  相似文献   

3.
Spin foam models are hoped to provide the dynamics of loop-quantum gravity. However, the most popular of these, the Barrett-Crane model, does not have the good boundary state space and there are indications that it fails to yield good low-energy n-point functions. We present an alternative dynamics that can be derived as a quantization of a Regge discretization of Euclidean general relativity, where second class constraints are imposed weakly. Its state space matches the SO(3) loop gravity one and it yields an SO(4)-covariant vertex amplitude for Euclidean loop gravity.  相似文献   

4.
The dual picture of quantum geometry provided by a spin network state is discussed. From this perspective, we introduce a new operator in Loop Quantum Gravity—the length operator. We describe its quantum geometrical meaning and derive some of its properties. In particular we show that the operator has a discrete spectrum and is diagonalized by appropriate superpositions of spin network states. A series of eigenstates and eigenvalues is presented and an explicit check of its semiclassical properties is discussed.  相似文献   

5.
A profound quantum-gravitational effect of space–time dimension running with respect to the size of space–time region has been discovered a few years ago through the numerical simulations of lattice quantum gravity in the framework of causal dynamical triangulation [hep-th/0505113] as well as in renormalization group approach to quantum gravity [hep-th/0508202]. Unfortunately, along these approaches the interpretation and the physical meaning of the effective change of dimension at shorter scales is not clear. The aim of this Letter is twofold. First, we find that box-counting dimension in face of finite resolution of space–time (generally implied by quantum gravity) shows a simple way how both the qualitative and the quantitative features of this effect can be understood. Second, considering two most interesting cases of random and holographic fluctuations of the background space, we find that it is random fluctuations that gives running dimension resulting in modification of Newton's inverse square law in a perfect agreement with the modification coming from one-loop gravitational radiative corrections.  相似文献   

6.
基于微扰展开,计算了联络场三点Green函数及单圈引力子自能对量子Wilson圈的贡献.结果表明,引力子三顶点及引力自能将使Einstein引力获得定域曲率的激发.  相似文献   

7.
First we contemplate the operational definition of space–time in four dimensions in light of basic principles of quantum mechanics and general relativity and consider some of its phenomenological consequences. The quantum gravitational fluctuations of the background metric that comes through the operational definition of space–time are controlled by the Planck scale and are therefore strongly suppressed. Then we extend our analysis to the braneworld setup with low fundamental scale of gravity. It is observed that in this case the quantum gravitational fluctuations on the brane may become unacceptably large. The magnification of fluctuations is not linked directly to the low quantum gravity scale but rather to the higher-dimensional modification of Newton's inverse square law at relatively large distances. For models with compact extra dimensions the shape modulus of extra space can be used as a most natural and safe stabilization mechanism against these fluctuations.  相似文献   

8.
In this paper the novel features of Yokoyama gaugeon formalism are stressed out for the theory of perturbative quantum gravity in the Einstein curved spacetime. The quantum gauge transformations for the theory of perturbative gravity are demonstrated in the framework of gaugeon formalism. These quantum gauge transformations lead to renormalised gauge parameter. Further, we analyse the BRST symmetric gaugeon formalism which embeds more acceptable Kugo–Ojima subsidiary condition. Further, the BRST symmetry is made finite and field-dependent. Remarkably, the Jacobian of path integral under finite and field-dependent BRST symmetry amounts to the exact gaugeon action in the effective theory of perturbative quantum gravity.  相似文献   

9.
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci–Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin–Vilkovisky (BV) formulation.  相似文献   

10.
We study the coupling of massive fermions to the quantum mechanical dynamics of spacetime emerging from the spinfoam approach in three dimensions. We first recall the classical theory before constructing a spinfoam model of quantum gravity coupled to spinors. The technique used is based on a finite expansion in inverse fermion masses leading to the computation of the vacuum to vacuum transition amplitude of the theory. The path integral is derived as a sum over closed fermionic loops wrapping around the spinfoam. The effects of quantum torsion are realised as a modification of the intertwining operators assigned to the edges of the two-complex, in accordance with loop quantum gravity. The creation of non-trivial curvature is modelled by a modification of the pure gravity vertex amplitudes. The appendix contains a review of the geometrical and algebraic structures underlying the classical coupling of fermions to three dimensional gravity.  相似文献   

11.
We study the influence of boundary conditions on the finite-size corrections of a one-dimensional (1D) quantum spin model by exact and perturbative theoretic calculations. We obtain two new infinite sets of universal amplitude ratios for the finite-size correction terms of the 1D quantum spin model of N sites with free and antiperiodic boundary conditions. The results for the lowest two orders are in perfect agreement with a perturbative conformal field theory scenario proposed by Cardy [J. Cardy, Nucl. Phys. B 270 (1986) 186].  相似文献   

12.
经典与量子Wilson圈泛函的计算   总被引:1,自引:1,他引:0  
用微扰方法计算了Kerr联络的Wilson圈泛函(WLF)及全曲率平方型高导数引力的WLF,结果表明在h级该类型的高导数引力存在定域曲率激发.  相似文献   

13.
We extend the definition of the “flipped” loop-quantum-gravity vertex to the case of a finite Immirzi parameter γ. We cover both the Euclidean and Lorentzian cases. We show that the resulting dynamics is defined on a Hilbert space isomorphic to the one of loop quantum gravity, and that the area operator has the same discrete spectrum as in loop quantum gravity. This includes the correct dependence on γ, and, remarkably, holds in the Lorentzian case as well. The ad hoc flip of the symplectic structure that was required to derive the flipped vertex is not anymore required for finite γ. These results establish a bridge between canonical loop quantum gravity and the spinfoam formalism in four dimensions.  相似文献   

14.
Here we shall find the Green’s function of the difference equation of loop quantum cosmology. To illustrate how to use it, we shall obtain an iterative solution for closed model and evaluate its corresponding Bohmian trajectory.  相似文献   

15.
We calculate the classical limit effective action of the EPRL/FK spinfoam model of quantum gravity coupled to matter fields. By employing the standard QFT background field method adapted to the spinfoam setting, we find that the model has many different classical effective actions. Most notably, these include the ordinary Einstein–Hilbert action coupled to matter, but also an action which describes antigravity. All those multiple classical limits appear as a consequence of the fact that the EPRL/FK vertex amplitude has cosine-like large spin asymptotics. We discuss some possible ways to eliminate the unwanted classical limits.  相似文献   

16.
Loop quantum cosmology (LQC) is used to provide concrete evidence in support of the general paradigm underlying spin foam models (SFMs). Specifically, it is shown that: (i) the physical inner product in the timeless framework equals the transition amplitude in the deparameterized theory; (ii) this quantity admits a vertex expansion a la SFMs in which the M-th term refers just to M volume transitions, without any reference to the time at which the transition takes place; (iii) the exact physical inner product is obtained by summing over just the discrete geometries; no ‘continuum limit’ is involved; and, (iv) the vertex expansion can be interpreted as a perturbative expansion in the spirit of group field theory. This sum over histories reformulation of LQC also addresses certain other issues which are briefly summarized.  相似文献   

17.
We conjecture that the modified commutation relations suggested in the context of quantum gravity (QG) persist also in the classical limit, if the momentum of the classical object is not too large, and calculate the corresponding perihelion precession rate for Keplerian orbits. The main result obtained in this Letter is not new. However the derivation is much simpler than the one proposed by Benczik et al. in [S. Benczik, L.N. Chang, D. Minic, N. Okamura, S. Rayyan, T. Takeuchi, Phys. Rev. D 66 (2002) 026003, arXiv:hep-th/0204049] where the corresponding precession rate was calculated for the first time. Our interpretation of the result is also quite different.  相似文献   

18.
The causal approach to perturbative quantum field theory is presented in detail, which goes back to a seminal work by Henri Epstein and Vladimir Jurko Glaser in 1973 [12]. Causal perturbation theory is a mathematically rigorous approach to renormalization theory, which makes it possible to put the theoretical setup of perturbative quantum field theory on a sound mathematical basis. Epstein and Glaser solved this problem for a special class of distributions, the time-ordered products, that fulfill a causality condition, which itself is a basic requirement in axiomatic quantum field theory. In their original work, Epstein and Glaser studied only theories involving scalar particles. In this review, the extension of the method to theories with higher spin, including gravity, is presented. Furthermore, specific examples are presented in order to highlight the technical differences between the causal method and other regularization methods, like, e.g. dimensional regularization.  相似文献   

19.
The complex nonperturbative color-confining dynamics of QCD is well captured in a semiclassical effective theory based on superconformal quantum mechanics and its extension to the light-front. I describe here how this new approach to hadron physics incorporates confinement, the appearance of nearly massless pseudoscalar particles, and Regge spectroscopy consistent with experiment. It also gives remarkable connections between the meson and baryon spectrum across the light and heavy-light hadron spectrum. I also briefly discuss how higher spin states are consistently described in this framework by the holographic embedding of the superconformal theory in a higher dimensional semiclassical gravity theory.  相似文献   

20.
In this paper we investigate the Yokoyama gaugeon formalism for perturbative quantum gravity in a general curved spacetime. Within the gaugeon formalism, we extend the configuration space by introducing vector gaugeon fields describing a quantum gauge degree of freedom. Such an extended theory of perturbative gravity admits quantum gauge transformations leading to a natural shift in the gauge parameter. Further we impose the Gupta–Bleuler type subsidiary condition to remove the unphysical gaugeon modes. To replace the Gupta–Bleuler type condition by a more acceptable Kugo–Ojima type subsidiary condition we analyze the BRST symmetric gaugeon formalism. Further, the physical Hilbert space is constructed for the perturbative quantum gravity which remains invariant under both the BRST symmetry and the quantum gauge transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号