共查询到15条相似文献,搜索用时 0 毫秒
1.
The relation between the Wilson–Polchinski and the Litim optimized ERGEs in the local potential approximation is studied with high accuracy using two different analytical approaches based on a field expansion: a recently proposed genuine analytical approximation scheme to two-point boundary value problems of ordinary differential equations, and a new one based on approximating the solution by generalized hypergeometric functions. A comparison with the numerical results obtained with the shooting method is made. A similar accuracy is reached in each case. Both two methods appear to be more efficient than the usual field expansions frequently used in the current studies of ERGEs (in particular for the Wilson–Polchinski case in the study of which they fail). 相似文献
2.
We investigate the role played by symmetry conserving quenched disorder on quantum criticality of a variety of d-dimensional systems with a continuous symmetry order parameter. We employ a non-standard procedure which combines a preliminary reduction to an effective classical random problem and a successive conventional renormalization group treatment. Solving the effective flow equations to first order in ε=4−d and then restoring the original coupling parameters, for d<4 we find a quantum critical point scenario exhibiting unusual features, which remind us of some predictions of the quantum Griffiths phase model. 相似文献
3.
《Physics letters. A》2008,372(38):5944-5950
In this Letter, He's homotopy perturbation method is applied to heat-like and wave-like equations with variable coefficients. The solutions are introduced in this Letter are in recursive sequence forms which can be used to obtain the closed form of the solutions if they are required. The method is tested on various examples which are revealing the effectiveness and the simplicity of the method. 相似文献
4.
The method of self-similar factor approximants is shown to be very convenient for solving different evolution equations and boundary-value problems typical of physical applications. The method is general and simple, being a straightforward two-step procedure. First, the solution to an equation is represented as an asymptotic series in powers of a variable. Second, the series are summed by means of the self-similar factor approximants. The obtained expressions provide highly accurate approximate solutions to the considered equations. In some cases, it is even possible to reconstruct exact solutions for the whole region of variables, starting from asymptotic series for small variables. This can become possible even when the solution is a transcendental function. The method is shown to be more simple and accurate than different variants of perturbation theory with respect to small parameters, being applicable even when these parameters are large. The generality and accuracy of the method are illustrated by a number of evolution equations as well as boundary value problems. 相似文献
5.
In this Letter, we implemented relatively new, exact series method of solution known as the differential transform method for solving singular two-point boundary value problems. Several illustrative examples are given to demonstrate the effectiveness of the present method. 相似文献
6.
In this Letter, an analysis is performed to find the unknown skin friction coefficient of the boundary layer Falkner-Skan equation for wedge. The governing equation takes into account the effect of a non-uniform magnetic field. The results are obtained by using Hankel-Padé method. 相似文献
7.
In this Letter, we propose a reliable algorithm to develop exact and approximate solutions for the linear and non-linear systems of partial differential equations. The approach rest mainly on two-dimensional differential transform method which is one of the approximate methods. The method can easily be applied to many linear and non-linear problems and is capable of reducing the size of computational work. Exact solutions can also be achieved by the known forms of the series solutions. Several illustrative examples are given to demonstrate the effectiveness of the present method. 相似文献
8.
This article considers the analytical approximation of limit cycles that may appear in Abel equations written in the normal form. The procedure uses an iterative approach that takes advantage of the contraction mapping theorem. Thus, the obtained sequence exhibits uniform convergence to the target periodic solution. The effectiveness of the technique is illustrated through the approximation of an unstable limit cycle that appears in an Abel equation arising in a tracking control problem that affects an elementary, second-order bilinear power converter. 相似文献
9.
10.
Jan M. Pawlowski 《Annals of Physics》2007,322(12):2831-2915
We discuss structural aspects of the functional renormalisation group. Flows for a general class of correlation functions are derived, and it is shown how symmetry relations of the underlying theory are lifted to the regularised theory. A simple equation for the flow of these relations is provided. The setting includes general flows in the presence of composite operators and their relation to standard flows, an important example being NPI quantities. We discuss optimisation and derive a functional optimisation criterion. Applications deal with the interrelation between functional flows and the quantum equations of motion, general Dyson-Schwinger equations. We discuss the combined use of these functional equations as well as outlining the construction of practical renormalisation schemes, also valid in the presence of composite operators. Furthermore, the formalism is used to derive various representations of modified symmetry relations in gauge theories, as well as to discuss gauge-invariant flows. We close with the construction and analysis of truncation schemes in view of practical optimisation. 相似文献
11.
The renormalization of the attractive 1/r2 potential has recently been studied using a variety of regulators. In particular, it was shown that renormalization with a square well in position space allows multiple solutions for the depth of the square well, including, but not requiring a renormalization group limit cycle. Here, we consider the renormalization of the 1/r2 potential in momentum space. We regulate the problem with a momentum cutoff and absorb the cutoff dependence using a momentum-independent counterterm potential. The strength of this counterterm is uniquely determined and runs on a limit cycle. We also calculate the bound state spectrum and scattering observables, emphasizing the manifestation of the limit cycle in these observables. 相似文献
12.
Yuji Ishimori 《Physics letters. A》2008,372(10):1562-1573
A new energy-conserving numerical integration method for Hamiltonian systems is presented. The method is constructed by a parallel connection of n multi-stage schemes of order 2 and its order of accuracy is 2n. 相似文献
13.
A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations 总被引:2,自引:0,他引:2 下载免费PDF全文
We study a generalized nonlinear Boussinesq equation by introducing a proper functional and constructing the variational iteration sequence with suitable initial approximation. The approximate solution is obtained for the solitary wave of the Boussinesq equation with the variational iteration method. 相似文献
14.
The study of the three-body problem with short-range attractive two-body forces has a rich history going back to the 1930s. Recent applications of effective field theory methods to atomic and nuclear physics have produced a much improved understanding of this problem, and we elucidate some of the issues using renormalization group ideas applied to precise nonperturbative calculations. These calculations provide 11-12 digits of precision for the binding energies in the infinite cutoff limit. The method starts with this limit as an approximation to an effective theory and allows cutoff dependence to be systematically computed as an expansion in powers of inverse cutoffs and logarithms of the cutoff. Renormalization of three-body bound states requires a short range three-body interaction, with a coupling that is governed by a precisely mapped limit cycle of the renormalization group. Additional three-body irrelevant interactions must be determined to control subleading dependence on the cutoff and this control is essential for an effective field theory since the continuum limit is not likely to match physical systems (e.g., few-nucleon bound and scattering states at low energy). Leading order calculations precise to 11-12 digits allow clear identification of subleading corrections, but these corrections have not been computed. 相似文献
15.
Loop variables and gauge invariant exact renormalization group equations for (open) string theory II
In arXiv:1202.4298 gauge invariant interacting equations were written down for the spin 2 and spin 3 massive modes using the exact renormalization group of a world sheet theory. This is generalized to all the higher levels in this paper. An interacting theory of an infinite tower of massive higher spins is obtained. They appear as a compactification of a massless theory in one higher dimension. The compactification and consequent mass is essential for writing the interaction terms. Just as for spin 2 and spin 3, the interactions are in terms of gauge invariant “field strengths” and the gauge transformations are the same as for the free theory. This theory can then be truncated in a gauge invariant way by removing one oscillator of the extra dimension to match the field content of BRST string (field) theory. The truncation has to be done level by level and results are given explicitly for level 4. At least up to level 5, the truncation can be done in a way that preserves the higher-dimensional structure. There is a relatively straightforward generalization of this construction to (arbitrary) curved space–time and this is also outlined. 相似文献