首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The characteristics of the aerosols generated by pneumatic concentric nebulizers as well as sensitivities were studied in ICP-MS with a total of 26 nebulizers: 17 of the A-type, 6 of the C-type, and 3 of the K-type. Although of the same design, discrepancies in sensitivity were observed among the A1-30 type nebulizers. Free delivery rate, relation between the median of the volume drop size distribution, D50, and the capillary i.d., effect of the nebulizer gas exit cross sectional area on D50, energy transfer efficiency from the gas to the liquid stream and spatial homogeneity within the aerosol cones were studied. For a given nebulizer design, the gas exit cross-sectional area has shown to critically influence the aerosol characteristics. The aerosol generation mechanism has been explored and it has been concluded that, for A-type nebulizers the nebulization is more efficient than for C and K-type ones. The spray chamber design has also a marked effect on the results according to the particular nebulizer used. It has been observed that sample capillary was not perfectly centered with regard to the gas exit bore for several nebulizers. In order to minimize the problems associated with this bad alignment (i.e., different sensitivity depending on the nebulizer), spray chambers equipped with impact beads may be used, but to the detriment of the sensitivity.  相似文献   

2.
A sample introduction system is described for use with a water-cooled ICP torch described previously [Anal. Chem.51, 2378 (1979)]. It consists of a narrow bore (100 μm) stainless steel Babington nebulizer operating on 0.05 to 0.2 lmin argon inserted into a small (10 ml) nebulizer chamber. The solvent is force-fed continuously by gas pressure or with a peristaltic pump. Liquid samples can be supplied continuously or in discrete quantities using a sample loop between the pump and the nebulizer. In the latter case only 25 s are required for sample change. The nebulization efficiency for water and organic solvents is comparable to that of conventional pneumatic nebulizers operating on 1 lmin argon.  相似文献   

3.
Matrix effects and plasma parameters in inductively coupled plasma atomic emission spectrometry (ICP-AES) using the sample introduction systems with ultrasonic and pneumatic nebulizations were studied. Analytical line intensities of fourteen elements and their detection limits as well as plasma temperatures, electron number density and ion-to-atom line intensity ratios were investigated with and without presence of complex matrix composed of Na, K, Mg and Ca. With ultrasonic nebulization in comparison to pneumatic nebulization, the line intensities were enhanced and the enhancement factor was dependent on the total line excitation energy. For each type of the sample introduction system, the changes in line intensities induced by the complex matrix were correlated with the sum of Ca and Mg concentrations. The excitation temperatures of atoms and ions, the ionization temperatures and the ion-to-atom line intensity ratios were the lowest using the ultrasonic nebulizer and quite well comparable for both pneumatic nebulizers (Meinhard and V-groove). The differences between excitation temperatures of ions and atoms were the largest while the electron number density was the lowest when the ultrasonic nebulizer was employed. Generally, the plasma parameters were independent of the matrix composition. The differences in plasma parameters observed for the individual nebulizers were related to various amounts of solvent loaded to the plasma.  相似文献   

4.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M+/34S+ ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of Li, V, Mn, Ni, Co, Cu, Sr, Mo, Ag, Ba, Cd, I, Hg, Pb, Bi and U in a single hair strand were in the range of 0.001-0.90 μg g−1, whereas those of Cr and Zn were 3.4 and 5.1 μg g−1, respectively. The proposed quantification strategy using on-line solution-based calibration in LA-ICP-MS was applied for biomonitoring (the spatial resolved distribution analysis) of essential and toxic metals and iodine in human hair and mouse hair.  相似文献   

5.
The effects and benefits of N2 addition to the central channel of the ICP through the nebulizer gas used in ICP OES with axial view configuration were investigated in the present study. The N2 flow rate, nebulizer gas flow rate, RF power and sample uptake rate were evaluated and compared for two sample introduction systems (pneumatic nebulization/aerosol desolvation and conventional pneumatic nebulization). It was observed that N2 did not affect solution nebulization and aerosol transport but affects the ICP characteristics. The higher thermal conductivity of N2 (in comparison with Ar) changes energy distribution in the ICP, observed by monitoring the signals of Ar emission lines and sodium emission. The ratio Mg(II)-280.270 nm/Mg(I)-285.213 nm was utilized as a diagnostic tool for plasma robustness. The addition of N2 (20 mL min−1) increased plasma robustness significantly and mitigated effects caused by Na, K and Ca. For 40 spectral lines evaluated, it was observed that the emission signals of ionic spectral lines were in general more affected by N2 than those of atomic spectral lines. Detection limits, precision, sensitivity and linearity of calibration curves obtained using N2-Ar-ICP were almost similar to those obtained using Ar-ICP. The analysis of 5 different reference materials revealed that accuracy was not degraded by adding N2 to the Ar-ICP.  相似文献   

6.
This paper deals with results of experiments performed with a 9 MHz free-running rf generator for producing an inductively coupled plasma (ICP) in argon. Samples were introduced as wet aerosols after nebulization with a concentric pneumatic nebulizer. The nett emission .signals of spectral lines emitted by Sr in the atomic as well as first ionized state were measured for volumes of plasma with projected square areas of 0.25 mm2. These measurements were made while varying the observation height above the rf coil and the gas flow in the central nebulizer tube as well as adding Cs to a concentration level of 1000 μg ml?1 to the samples.Ionic excitation temperatures were calculated and found not to be influenced by the presence of the Cs matrix. An interference induced by Cs causes an increase in both Sr atomic and ionic line intensities only in the so called preheating zone at the higher nebulizer gas flows and just above the rf coil.The Cs induced interference at these conditions results in an increase of the Sr ionic and atomic line intensity ratio, signifying a non-LTE process changing the relative population distribution of the Sr and Sr+ energy states.  相似文献   

7.
The analytical figures of merit observed under flow injection analysis (FIA) conditions of a direct injection nebulizer (DIN) interfaced to an inductively coupled plasma-atomic emission spectroscopy (ICP-AES) facility were found to be comparable to or better than conventional pneumatic nebulization in terms of limits of detection, reproducibility and interelement effects. The DIN offered clog-free operation and part per billion limits of detection for 30μl sample injection volumes and carrier stream consumption rates in the range of 100–200μl min −1. The relative detection limits observed were generally comparable to those obtained for: (a) FIA introduction of 200μl or continuous sample introduction into a conventional cross flow nebulizer; and (b) FIA introduction of 500μl or continuous sample introduction into an ultrasonic nebulizer. Absolute and relative detection limits were comparable to or within the range of values reported for electrothermal vaporization-ICP-AES and comparable or superior to those reported for the graphite cup, direct insertion-ICP-AES. The reported absolute detection limits for the graphite-rod direct insertion approach ranged from comparable values to superior by a factor of 30. At the normal compromise observation height (20 mm), the interelement effects, to the extent they were observable, were comparable in magnitude for both the DIN and conventional cross-flow pneumatic nebulizer.  相似文献   

8.
An improved, continuous-flow ultrasonic nebulizer equipped with a desolvation system for generating dehydrated aerosol particles prior to their injection into analytical inductively coupled plasmas is described. Results of a critical evaluation of the performance of the nebulizer-desolvation system are also presented. Compared to the commonly used pneumatic nebulizers studied in this work, the ultrasonic version described in this paper provided superior powers of detection, ranging from factors of 5–50, and yielded comparable to superior short and long term reproducibility for dilute acid and high salt content solutions. Clean out times for the ultrasonic nebulizer were marginally longer, by 15–20 s, than those observed for pneumatic nebulizers. “Memory effects” and “desolvation interferences” were generally reducible to negligible proportions through the application of various expediencies discussed in this paper. When substantial changes in concomitant concentrations caused measurable interelement effects, the magnitude of these effects tended to be slightly higher for the ultrasonic system. However, when the samples destined for ultrasonic nebulization were diluted by factors of ~ 10, which corresponds approximately to the superiority of the nebulization efficiency of the ultrasonic nebulizer, the magnitudes of the interelement effects were comparable.  相似文献   

9.
This paper reports characterization of the behavior of five pneumatic micronebulizers based on slightly different designs in inductively coupled plasma atomic-emission spectrometry and mass spectrometry (ICP–AES and ICP–MS). Two nebulizers were used as reference nebulizers, a high-efficiency nebulizer (HEN) and a micromist (MM). They were compared with a commercially available PFA (tetrafluoroethylene–perfluoroalkyl vinyl ether copolymer) nebulizer and with two new prototypes called the polymeric pneumatic concentric nebulizer (PMN) and the high-solids micronebulizer (HSM). The dimensions of the nebulizers, the gas back-pressure, and the free liquid uptake rates were measured. The study also included tertiary aerosol drop-size distributions, analyte transport rate, and analytical figures of merit, i.e. sensitivities and limits of detection, both in ICP–AES and ICP–MS. Recoveries for two food solid reference materials were also determined. Overall, the results indicated that the PFA and the HEN nebulizers provided the best results. These two nebulizers delivered a higher mass of analyte to the plasma and showed better sensitivies giving lower limits of detection than the PMN, HSM and MM. The results revealed that the liquid prefilming effect occurring before aerosol production in the PFA nebulizer promoted more efficient interaction of liquid and gas, thus affording good results even though gas back-pressure values could be maintained below 3 bar. In contrast, the HEN had to be operated at about 7 bar under the same conditions. Nebulizer design did not have a relevant effect on the recovery, which confirmed that the spray chamber plays an important role in terms of non-spectroscopic interferences.  相似文献   

10.
A new torch, a shortened version of a standard demountable torch, is proposed for facilitating direct injection of liquid samples into an inductively coupled plasma mass spectrometer using conventional and micro-pneumatic nebulizers. The proposed arrangement reduces the cost of the direct injector nebulizer by a factor of 5, typically from $2000 to $400, although a different torch is required. The analytical performance of the high efficiency nebulizer-short torch arrangement is compared to that obtained with the direct injection high efficiency nebulizer interfaced to the conventional torch. Optimum operating conditions for the high efficiency nebulizer-short torch arrangement are generally similar to those of the direct injection high efficiency nebulizer: high RF power (1500 W), low nebulizer gas flow rates (0.09 L/min) and low solution uptake rates (5–85 μL/min). Sensitivity with the high efficiency nebulizer-short torch system at 85 μL/min is improved by a factor of 2.4 on average compared to the direct injection high efficiency nebulizer, while precision values (%RSD) and detection limits are generally comparable or slightly degraded (on average by a factor of 1.7), respectively. Sensitivity is also better at lower solution uptake rates (5 μL/min) by factors ranging from 2 (82Se) to 7 (59Co) compared to the direct injection high efficiency nebulizer. Additionally, the %RSD values are better at 5 μL/min, ranging from 3.5% to 6.0% for the high efficiency nebulizer-short torch combination compared to 4.7 to 9.1% for the direct injection high efficiency nebulizer. The utility of the high efficiency nebulizer-short torch arrangement is demonstrated through the microscale flow injection analysis of Cr-DNA adducts and the analysis of four certified reference materials (Lyphochek urine metals control, SRM 1515: Apple Leaves, SRM 1570a: Spinach Leaves, SRM 1577b: Bovine Liver). Peak to peak precision values (N = 3) for the microscale flow injection analysis-high efficiency nebulizer-short torch system is 3.1% and 3.7% based on peak areas and heights, respectively, at a solution uptake rate of 85 μL/min. Good agreement is obtained between certified and measured concentrations for several elements across the mass range (e.g., Al, V, Mn, As, Cd, Pb, U). The proposed system is novel because it potentially offers a lower-cost and a more universal arrangement for improved direct solution introduction in plasma mass spectrometry using off-the-shelf commercial nebulizers.  相似文献   

11.
A method based on the coupling microHPLC-microneb-ICPMS has been developed for Hg(II), MeHg+, EtHg+ and PhHg+ species. Gradient elution using methanol and l-cysteine at pH 3.0 allowed the chromatographic separation of all species in less than 13 min (total analysis time 15 min). The direct coupling of microLC to ICPMS through a Micromist nebulizer permits the analysis of environmental water without sample pretreatment and derivatization steps. Nebulizer type, organic modifier and column length were the main parameters tested. The methanol content and pH of the mobile phase greatly affected the retention time and sensitivity of the method. Key factors to obtain high signal to noise ratio, at concentrations below 1 μg L−1, were found to be the nebulization step and traces of Hg present in the complexing agent. A detailed optimization of carrier and make up gas flow rates have enabled the nebulization of the methanol gradient elution with good mass transport efficiency, low organic solvent loading into the plasma and excellent precision.The performance of the microHPLC-microneb-ICPMS method developed was evaluated on a surface water sample filtered (0.22 μm) and spiked with 0.5 μg L−1 (as Hg) of each species. Precision (R.S.D., n = 6) for all species of Hg varied from 0.5 to 2.1%. Detection limit, defined as three times the standard deviation (n = 6), ranged from 8 ng L−1 for EtHg+ to 32 ng L−1 for PhHg+ and was noticeably lower than those reported in previous LC-based methods. Accuracy was suitable with recoveries ranging from 85 to 100% when tested at two levels (0.5 and 10 μg L−1) in groundwater samples. Recovery was matrix affected when water samples of high salinity (depurated wastewater and seawater) were used.  相似文献   

12.
The novel analytical application of the combination of an inline electrothermal vaporization (ETV) and nebulization source for inductively coupled plasma mass spectrometry (ICP-MS) has been studied. Wet plasma conditions are sustained during ETV introduction by 200 mL/min gas flow through the nebulizer, which is merged with the ETV transport line at the torch. The use of a wet plasma with ETV introduction avoided the need to change power settings and torch positions that normally accompany a change from wet to dry plasma operating conditions. This inline-ETV source is shown to have good detection limits for a variety of elements in both HNO3 and HCl matrices. Using the inline-ETV source, improved limits of detection (LOD) were obtained for elements typically suppressed by polyatomic interferences using a nebulizer. Specifically, improved LODs for 51V and 53Cr suffering from Cl interferences (51ClO+ and 53ClO+ respectively) in a 1% HCl matrix were obtained using the inline-ETV source. LODs were improved by factors of 65 and 22 for 51V and 53Cr, respectively, using the inline-ETV source compared to a conventional concentric glass nebulizer. For elements without polyatomic interferences, LODs from the inline-ETV were comparable to conventional dry plasma ETV-ICP time-of-flight mass spectrometry results. Lastly, the inline-ETV source offers a simple means of changing from nebulizer introduction to inline-ETV introduction without extinguishing the plasma. This permits, for example, the use of the time-resolved ETV-ICP-MS signals to distinguish between an analyte ion and polyatomic isobar.  相似文献   

13.
A dual sample introduction system was explored for volatile hydride generation in inductively coupled plasma–optical emission spectrometry (ICP–OES) performed in the radially viewed mode. The system consists of two pneumatic nebulizers connected to the conventional spray chamber of the instrument via a simple adaptor. This configuration permits hydride generation but still allows other elements to be determined by pneumatic nebulization. This work was focused on the optimization of the plasma operating conditions for the determination of As, Hg, Sb and Se and other elements. The excitation conditions of the ICP–OES instrument operated with the dual sample introduction system were also explored. Results showed that the analytical performance of the dual system for the determination of As, Hg, Sb and Se was superior to those of conventional nebulization systems. The dual system also enabled the determination of elements that do not form volatile hydrides, but with less sensitivity than conventional nebulization systems. An evaluation of the plasma robustness showed that the gases generated in the hydride reactions did not significantly affect the plasma discharge. Similar to conventional hydride generation techniques, the analysis was susceptible to nonspectroscopic interferences produced by transition metals. Finally, the applicability of the dual nebulization system to practical ICP–OES studies was demonstrated by determining the trace elements in an oyster tissue standard reference material.   相似文献   

14.
The optimization of the hyphenation between capillary zone electrophoresis (CZE) and inductively coupled plasma mass spectrometry (ICP-MS) was studied for the simultaneous determination of metalloid species in the environment. Arsenic (arsenite, arsenate, monomethylarsonic acid, dimethylarsinic acid), selenium (selenite, selenate, selenomethionine, selenocystine), antimony (antimonate) and tellurium (tellurite, tellurate) species were simultaneously separated using a 75-μm i.d. fused silica capillary using either a chromate or a phosphate electrolyte. Different nebulizers were tested for introduction in the detector. A V-groove nebulizer (the Babington) and two concentric micronebulizers (the MCN-100 and the MicroMist) were studied in order to improve resolution, sensitivity and reproducibility. The optimization of CE-ICP-MS interface operating parameters is discussed for each nebulizer–interface combination, and special attention is given to the position of the capillary inside the nebulizer. Different nebulizer gas and liquid sheath flow rates were studied in detail and they hardly affect electrophoretic resolution and peak width. The best analytical performance characteristics were obtained with the MicroMist nebulizer. Detection limits with this nebulizer were found to range between 6 and 58 μg l−1 depending on the species investigated using pressure injection and below 1 μg l−1 for most of the species with electromigrative injection. Analysis of soil extracts showed that it was possible to carry out this technique on real samples.  相似文献   

15.
Summary The influence of increasing concentration of water-soluble polymers on the analytical signals for Cd, Co, Cu, Fe, Ni in flame atomic absorption spectrometry with hydraulic high-pressure nebulization (HHPN) and pneumatic nebulization (self uptake mode) has been studied using aqueous solutions of poly(ethyleneimine) (PEI) as examples. For a solution of 50 g/l polymer, HHPN sample introduction leads to a 5.0 (Cd), 8.8 (Co), 17 (Cu), 7.1 (Fe) and 22 (Ni) fold higher sensitivity compared to pneumatic nebulization. Even at polymer concentrations of more than 100 g/l HHPN operation is still possible without any problems, whilst such viscous solutions cannot be transferred into an aerosol by a pneumatic nebulizer.  相似文献   

16.
The authors studied the dependence of the net line intensity (x) on RF power (P) for three Cd lines with two different nebulizers a pneumatic and an ultrasonic nebulizer. The dependence of x on P was found to be different for the two nebulizer types and this difference is attributed to a difference in droplet size and a consequent difference in the rate of water introduction into the plasma associated with the two nebulizers.  相似文献   

17.
If sample pretreatment, nebulization and method of calibration are suitably adapted to each other the performance of inductively coupled plasma - mass spectrometry ICP-MS can be greatly increased. High accuracy is obtained by high precision and low bias. For a given concentration higher sensitivity means higher count rates and therefore higher precision. Systematic errors are minimized by employing a definitive method of calibration. Increased sensitivity is obtained by introducing higher amounts of sample into the measurement system via high efficiency nebulizers (ultrasonic nebulizer, hydraulic-high pressure nebulizer according to Berndt and concentric high efficiency nebulizer according to Meinhard). Because this means also higher matrix effects a combination of ion chromatographic (IC-TMS) and thermal trace-matrix-separation by aerosol desolvation (T-TMS) is introduced. Isotope dilution (ID) proves to be the calibration most suitable to achieve the highest accuracy. First applications on the analysis of refractory metals (e.g. Ti, V, Nb, Ta) and non-metals (e.g. P, S, As, Se) showed recoveries of 60-105%, an imprecision of the recoveries of 2-50%, but an overall inaccuracy of only 0.1 to 4%.  相似文献   

18.
The present paper introduces a new type of concentric glass nebulizer named "LB-II nebulizer". It is the modification between the LB nebulizer (1) and the Meinhard. Its out face is similar with the Meinhard, but the LB-11 nebulizer is capable of continuous operation with saturated solutions of NaCl (26.54% at 25° C) for more than 2 hours without clogging, and the stability is superior than the LB nebulizer. The argon air flowing remains constantly during the operation. Its structure is very simple in nebulizers to analysis high salt solutions by using the ICP-AES. The operating conditions are same for these two nebulizers and the results between them are shown in the table. The LB-II nebulizer can give higher signal-to-background ratios and lower detection limits than the Meinhard neblizer as shown in the table.  相似文献   

19.
The performance of an inductively coupled plasma (ICP) for atomic emission spectroscopy (AES) is strongly dependent upon the sample introduction system. The Thermospray Vaporizer has recently been shown to yield enhanced sensitivity compared to conventional pneumatic nebulizers when used as a sample introduction source for the ICP. This report is a study of the properties of the aerosols produced by the thermospray. Aerosol particle diameter distributions have been related to droplet size distribution and nebulization efficiencies as a function of the relevant variables of the nebulization system. The results help explain high emission intensities and lower detection limits achieved using the thermospray. The higher efficiencies with thermospray, compared to conventional pneumatic nebulization, also makes the thermospray a prime candidate for sample introduction into molecular gas ICPs.  相似文献   

20.
A new sample introduction system based on spray nebulization has been successfully developed to perform direct analysis of liquid samples by IMS. The system comprises a concentric nebulizer that generates a spray plume which is introduced in the ionization region of the IMS instrument through a temperature controlled transfer line. This system avoids previous problems of direct injection of liquid samples and maintains the countercurrent flow of inert gas necessary for the operation of the IMS instrument. Evaluation of the qualitative and quantitative capabilities of the methodology has been performed after a carefully study of the main variables affecting the spray nebulization and the transport of the analyte molecules through the transfer line. To demonstrate the usefulness of the new sample introduction system, direct analysis of drugs and drug metabolites in saliva or urine samples have been performed, obtaining accurate, reliable and sensitive results. Moreover, analytes with physico-chemical properties that limited the capability of thermal desorption as sample introduction method such as amino acids can be analyzed by using the spray nebulization methodology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号